Question Number 44317 by abdo.msup.com last updated on 26/Sep/18
$${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}−\left[{t}\right]}{{t}\left({t}+{n}\right)}{dt} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Sep/18
$$\frac{{t}−{r}}{{t}\left({t}+{n}\right)}=\frac{\mathrm{1}}{{t}+{n}}−\frac{{r}}{{t}\left({t}+{n}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{t}+{n}}−\frac{{r}}{{n}}×\frac{\left({t}+{n}\right)−{t}}{{t}\left({t}+{n}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{t}+{n}}−\frac{{r}}{{n}}×\left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{{t}+{n}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{t}+{n}}+\frac{{r}}{{n}}×\frac{\mathrm{1}}{{t}+{n}}−\frac{{r}}{{n}}×\frac{\mathrm{1}}{{t}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{1}+\frac{{r}}{{n}}\right)\left(\frac{\mathrm{1}}{{t}+{n}}\right)−\frac{{r}}{{n}}×\frac{\mathrm{1}}{{t}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\left(\mathrm{1}+\frac{\mathrm{0}}{{n}}\right)\left(\frac{\mathrm{1}}{{t}+{n}}\right)−\frac{\mathrm{0}}{{n}}×\frac{\mathrm{1}}{{t}}\right\}{dt}+ \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\frac{\mathrm{1}}{{t}+{n}}\right)−\frac{\mathrm{1}}{{n}}×\frac{\mathrm{1}}{{t}}{dt}+… \\ $$$$\int_{{r}} ^{{r}+\mathrm{1}} \left(\mathrm{1}+\frac{{r}}{{n}}\right)\left(\frac{\mathrm{1}}{{t}+{n}}\right)−\frac{{r}}{{n}}×\frac{\mathrm{1}}{{t}}+… \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{0}}{{n}}\right)\mid{ln}\left({t}+{n}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{0}}{{n}}×\mid{lnt}\mid_{\mathrm{0}} ^{\mathrm{1}} + \\ $$$$\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\mid{ln}\left({t}+{n}\right)\mid_{\mathrm{1}} ^{\mathrm{2}} −\frac{\mathrm{1}}{{n}}×\mid{lnt}\mid_{\mathrm{1}} ^{\mathrm{2}} +… \\ $$$$\:\:\:\:\:\:\left(\mathrm{1}+\frac{{r}}{{n}}\right)\mid{ln}\left({t}+{n}\right)\mid_{{r}} ^{{r}+\mathrm{1}} +\frac{{r}}{{n}}×\mid{lnt}\mid_{{r}} ^{{r}+\mathrm{1}} +… \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{0}}{{n}}\right)\left\{{ln}\left(\frac{\mathrm{1}+{n}}{\mathrm{0}+{n}}\right)\right\}−\frac{\mathrm{0}}{{n}}×\left\{{ln}\mathrm{1}−{ln}\mathrm{0}\right\}+ \\ $$$$\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left\{{ln}\left(\frac{\mathrm{2}+{n}}{\mathrm{1}+{n}}\right)\right\}−\frac{\mathrm{1}}{{n}}×\left\{{ln}\mathrm{2}−{ln}\mathrm{1}\right\}+.. \\ $$$$\:\:\:\:\:\left(\mathrm{1}+\frac{{r}}{{n}}\right)\left\{{ln}\left(\frac{{r}+\mathrm{1}+{n}}{{r}+{n}}\right)\right\}−\frac{{r}}{{n}}\left\{{ln}\left({r}+\mathrm{1}\right)−{lnr}\right\}+.. \\ $$$$=\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\frac{{r}}{{n}}\right)\left\{{ln}\left(\frac{{r}+\mathrm{1}+{n}}{{r}+{n}}\right)\right\}−\frac{{r}}{{n}}\left\{{ln}\left(\frac{{r}+\mathrm{1}}{{r}}\right)\right\} \\ $$$$ \\ $$$$ \\ $$