Menu Close

let-U-n-0-x-2n-1-x-4-dx-with-n-integr-natural-and-n-1-1-calculate-U-n-interms-of-n-2-find-lim-n-n-2-U-n-3-study-the-serie-U-n-




Question Number 61530 by maxmathsup by imad last updated on 04/Jun/19
let U_n =∫_0 ^∞     (x^(−2n) /(1+x^4 )) dx   with n integr natural and   n≥1  1) calculate U_n  interms of n  2) find lim_(n→+∞)  n^2  U_n   3) study the serie Σ U_n
letUn=0x2n1+x4dxwithnintegrnaturalandn11)calculateUnintermsofn2)findlimn+n2Un3)studytheserieΣUn
Commented by maxmathsup by imad last updated on 04/Jun/19
1) changement x^4 =t give x =t^(1/4)  ⇒U_n =∫_0 ^∞     (((t^(1/4) )^((−2)/n)    )/(1+t)) (1/4)t^((1/4)−1) dt  =(1/4)∫_0 ^∞    (t^(−(1/(2n))+(1/4)−1) /(1+t)) dt =(1/4) ∫_0 ^∞   (t^((1/4)−(1/(2n)) −1) /(1+t))dt   let  a=(1/4)−(1/(2n)) ⇒a =((2n−4)/(8n)) =((n−2)/(4n))>0  for n>2  and a−1 =((n−2)/(4n)) −1 =((n−2−4n)/(4n)) =((−3n−2)/(4n)) <0 ⇒0<a<1 ⇒  U_n = (1/4) (π/(sin(πa))) =(π/(4sin(π((1/4)−(1/(2n)))))) =(π/(4 sin((π/4)−(π/(2n)))))
1)changementx4=tgivex=t14Un=0(t14)2n1+t14t141dt=140t12n+1411+tdt=140t1412n11+tdtleta=1412na=2n48n=n24n>0forn>2anda1=n24n1=n24n4n=3n24n<00<a<1Un=14πsin(πa)=π4sin(π(1412n))=π4sin(π4π2n)
Commented by maxmathsup by imad last updated on 04/Jun/19
forgive U_n = ∫_0 ^∞     (x^(−(2/n)) /(1+x^4 )) dx with n≥3
forgiveUn=0x2n1+x4dxwithn3
Commented by maxmathsup by imad last updated on 04/Jun/19
i have used  the result ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa)))  with 0<a<1
ihaveusedtheresult0ta11+tdt=πsin(πa)with0<a<1
Commented by maxmathsup by imad last updated on 04/Jun/19
2) sin((π/4)−(π/(2n))) =sin((π/4))cos((π/(2n)))−cos((π/4))sin((π/(2n)))=((√2)/2)(cos((π/(2n)))−sin((π/(2n)))) ⇒  cos((π/(2n)))∼1−((((π/(2n)))^2 )/2) =1−(π^2 /(8n^2 ))    ,  sin((π/(2n)))∼ (π/(2n)) ⇒  U_n ∼  (π/(2(√2){1−(π^2 /(8n^2 ))−(π/(2n))})) =(1/(2(√2){ (1/π)−(π/(8n^2 )) −(1/(2n))})) ⇒n^2  U_n ∼ (n^2 /(2(√2){(1/π)−(π/(8n^2 ))−(1/(2n))}))  lim_(n→+∞)   ((1/π) −(π/(8n^2 )) (1/(2n))) =(1/π) ⇒lim_(n→+∞) n^2  U_n =+∞
2)sin(π4π2n)=sin(π4)cos(π2n)cos(π4)sin(π2n)=22(cos(π2n)sin(π2n))cos(π2n)1(π2n)22=1π28n2,sin(π2n)π2nUnπ22{1π28n2π2n}=122{1ππ8n212n}n2Unn222{1ππ8n212n}limn+(1ππ8n212n)=1πlimn+n2Un=+
Commented by maxmathsup by imad last updated on 04/Jun/19
3) we  lim_(n→∞) U_n =(π/(2(√2))) ≠0 ⇒ Σ U_n  diverges .
3)welimnUn=π220ΣUndiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *