Menu Close

let-U-n-1-2-2-2-3-2-n-2-1-4-2-4-3-4-n-4-1-find-lim-n-U-n-2-calculate-n-1-U-n-




Question Number 58354 by maxmathsup by imad last updated on 21/Apr/19
let U_n =((1^2  +2^2  +3^2  +....+n^2 )/(1^4  +2^4  +3^4  +....+n^4 ))  1)find lim_(n→+∞) U_n   2) calculate Σ_(n=1) ^∞  U_n
letUn=12+22+32+.+n214+24+34+.+n41)findlimn+Un2)calculaten=1Un
Answered by tanmay last updated on 22/Apr/19
U_n   here =(N_r /D_r )  N_r =Σ_(r=1) ^n r^2 =(n^3 /3)+(n^2 /2)+(n/6)  D_r =Σ_(r=1) ^n r^4 =(n^5 /5)+(n^4 /2)+(n^3 /3)−(n/(30))  each term of N_r < each term of D_r   lim_(n→∞)  (((n^3 /3)+(n^2 /2)+(n/6))/((n^5 /5)+(n^4 /2)+(n^3 /3)−(n/(30))))  devide N_r  and D_r  by  n^5 →  lim_(n→∞)  (((1/(3n^2 ))+(1/(2n^3 ))+(1/(6n^4 )))/((1/5)+(1/(2n))+(1/(3n^2 ))−(1/(30n^4 ))))  =((0+0+0)/((1/5)+0+0−0))  =0
Unhere=NrDrNr=nr=1r2=n33+n22+n6Dr=nr=1r4=n55+n42+n33n30eachtermofNr<eachtermofDrlimnn33+n22+n6n55+n42+n33n30devideNrandDrbyn5limn13n2+12n3+16n415+12n+13n2130n4=0+0+015+0+00=0

Leave a Reply

Your email address will not be published. Required fields are marked *