Menu Close

let-u-n-1-i-lt-j-n-1-ij-1-find-a-equivalent-of-u-n-2-calculate-lim-n-u-n-




Question Number 43003 by abdo.msup.com last updated on 06/Sep/18
let u_n = Σ_(1≤i<j≤n)   (1/( (√(ij))))  1) find a equivalent of u_n   2)calculate lim_(n→+∞)  u_n
letun=1i<jn1ij1)findaequivalentofun2)calculatelimn+un
Answered by maxmathsup by imad last updated on 07/Sep/18
1)  we have  (Σ_(i=1) ^n  (1/( (√i))))^2  = Σ_(i=1) ^n  (1/i) +2 Σ_(1≤i<j≤n)     (1/( (√i))) (1/( (√j)))  = H_n  + 2u_n       ⇒u_n =(1/2){ (Σ_(i=1) ^n   (1/( (√i))))^2  −H_n )  by we have provedthat  Σ_(i=1) ^n   (1/( (√i)))  ∼ 2(√n)(n→+∞)  and H_n = ln(n) +γ +o((1/n)) ⇒  u_n   ∼ (1/2){  4n −ln(n)−γ +o((1/n))} ⇒ u_n  ∼ 2n −ln((√n)) −(γ/2) +o((1/n))   2) we have u_n  ∼ 2n −ln((√n)) −(γ/2) +o((1/n)) but   lim_(n→+∞)  2n−ln((√n)) =lim_(n→+∞)  n(2−((ln(n))/(2n))) =lim_(n→+∞)  (2n) =+∞ ⇒  lim_(n→+∞)  u_n  =+∞ .
1)wehave(i=1n1i)2=i=1n1i+21i<jn1i1j=Hn+2unun=12{(i=1n1i)2Hn)bywehaveprovedthati=1n1i2n(n+)andHn=ln(n)+γ+o(1n)un12{4nln(n)γ+o(1n)}un2nln(n)γ2+o(1n)2)wehaveun2nln(n)γ2+o(1n)butlimn+2nln(n)=limn+n(2ln(n)2n)=limn+(2n)=+limn+un=+.

Leave a Reply

Your email address will not be published. Required fields are marked *