let-u-n-1-i-lt-j-n-1-ij-1-find-a-equivalent-of-u-n-2-calculate-lim-n-u-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 43003 by abdo.msup.com last updated on 06/Sep/18 letun=∑1⩽i<j⩽n1ij1)findaequivalentofun2)calculatelimn→+∞un Answered by maxmathsup by imad last updated on 07/Sep/18 1)wehave(∑i=1n1i)2=∑i=1n1i+2∑1⩽i<j⩽n1i1j=Hn+2un⇒un=12{(∑i=1n1i)2−Hn)bywehaveprovedthat∑i=1n1i∼2n(n→+∞)andHn=ln(n)+γ+o(1n)⇒un∼12{4n−ln(n)−γ+o(1n)}⇒un∼2n−ln(n)−γ2+o(1n)2)wehaveun∼2n−ln(n)−γ2+o(1n)butlimn→+∞2n−ln(n)=limn→+∞n(2−ln(n)2n)=limn→+∞(2n)=+∞⇒limn→+∞un=+∞. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-174074Next Next post: Question-108538 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.