Menu Close

let-u-n-1-k-1-n-u-k-with-n-gt-0-and-u-1-1-1-calculate-u-2-u-3-u-4-and-u-5-2-prove-that-n-2-u-n-2-u-n-2-u-n-3-study-the-variation-of-u-n-4-prove-that-lim-n-




Question Number 51982 by maxmathsup by imad last updated on 01/Jan/19
let u_(n+1) =(√(Σ_(k=1) ^n  u_k ))       with n>0   and u_1 =1  1)calculate u_2 ,u_3 ,u_4 and u_5   2)prove that  ∀n≥2     u_(n+) ^2 =u_n ^2  +u_n   3)study the variation of u_n   4)prove that lim_(n→+∞) u_n =+∞  5)prove that u_(n+1) ∼u_n   (n→+∞)  6)let v_n =u_(n+1) −u_n   prove that (v_n ) converges and find its limit.
letun+1=k=1nukwithn>0andu1=11)calculateu2,u3,u4andu52)provethatn2un+2=un2+un3)studythevariationofun4)provethatlimn+un=+5)provethatun+1un(n+)6)letvn=un+1unprovethat(vn)convergesandfinditslimit.

Leave a Reply

Your email address will not be published. Required fields are marked *