Menu Close

let-u-n-1-k-1-n-u-k-with-n-gt-0-and-u-1-1-1-calculate-u-2-u-3-u-4-and-u-5-2-prove-that-n-2-u-n-2-u-n-2-u-n-3-study-the-variation-of-u-n-4-prove-that-lim-n-




Question Number 51982 by maxmathsup by imad last updated on 01/Jan/19
let u_(n+1) =(√(Σ_(k=1) ^n  u_k ))       with n>0   and u_1 =1  1)calculate u_2 ,u_3 ,u_4 and u_5   2)prove that  ∀n≥2     u_(n+) ^2 =u_n ^2  +u_n   3)study the variation of u_n   4)prove that lim_(n→+∞) u_n =+∞  5)prove that u_(n+1) ∼u_n   (n→+∞)  6)let v_n =u_(n+1) −u_n   prove that (v_n ) converges and find its limit.
$${let}\:{u}_{{n}+\mathrm{1}} =\sqrt{\sum_{{k}=\mathrm{1}} ^{{n}} \:{u}_{{k}} }\:\:\:\:\:\:\:{with}\:{n}>\mathrm{0}\:\:\:{and}\:{u}_{\mathrm{1}} =\mathrm{1} \\ $$$$\left.\mathrm{1}\right){calculate}\:{u}_{\mathrm{2}} ,{u}_{\mathrm{3}} ,{u}_{\mathrm{4}} {and}\:{u}_{\mathrm{5}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:\forall{n}\geqslant\mathrm{2}\:\:\:\:\:{u}_{{n}+} ^{\mathrm{2}} ={u}_{{n}} ^{\mathrm{2}} \:+{u}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{variation}\:{of}\:{u}_{{n}} \\ $$$$\left.\mathrm{4}\right){prove}\:{that}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} =+\infty \\ $$$$\left.\mathrm{5}\right){prove}\:{that}\:{u}_{{n}+\mathrm{1}} \sim{u}_{{n}} \:\:\left({n}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{6}\right){let}\:{v}_{{n}} ={u}_{{n}+\mathrm{1}} −{u}_{{n}} \:\:{prove}\:{that}\:\left({v}_{{n}} \right)\:{converges}\:{and}\:{find}\:{its}\:{limit}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *