Question Number 52675 by maxmathsup by imad last updated on 11/Jan/19
$${let}\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}} {xdx}\:\:{calculate}\:\Sigma\:{u}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 11/Jan/19
$${we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(−{sinx}\right)^{{n}} {dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{sinx}\right)^{{n}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}+{sinx}}\:\:=_{{tan}\left(\frac{{x}}{\mathrm{2}\:}\right)={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{2}\left[−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\mathrm{1}\:\Rightarrow\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} =\mathrm{1}\:. \\ $$