Menu Close

let-u-n-1-n-0-pi-2-sin-n-xdx-calculate-u-n-




Question Number 52675 by maxmathsup by imad last updated on 11/Jan/19
let u_n =(−1)^n ∫_0 ^(π/2)  sin^n xdx  calculate Σ u_n
letun=(1)n0π2sinnxdxcalculateΣun
Commented by maxmathsup by imad last updated on 11/Jan/19
we have Σ_(n=0) ^∞  u_n  =Σ_(n=0) ^∞ ∫_0 ^(π/2) (−sinx)^n dx =∫_0 ^(π/2)  (Σ_(n=0) ^∞ (−sinx)^n )dx  =∫_0 ^(π/2)   (dx/(1+sinx))  =_(tan((x/(2 )))=t)    ∫_0 ^1    (1/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =2 ∫_0 ^1    (dt/(1+t^2  +2t))  =2 ∫_0 ^1   (dt/((t+1)^2 )) =2[−(1/(t+1))]_0 ^1 =2(1−(1/2)) = 1 ⇒ Σ_(n=0) ^∞  u_n =1 .
wehaven=0un=n=00π2(sinx)ndx=0π2(n=0(sinx)n)dx=0π2dx1+sinx=tan(x2)=t0111+2t1+t22dt1+t2=201dt1+t2+2t=201dt(t+1)2=2[1t+1]01=2(112)=1n=0un=1.

Leave a Reply

Your email address will not be published. Required fields are marked *