Menu Close

let-U-n-1-n-1-x-2-3-n-dx-calculate-lim-n-U-n-




Question Number 55214 by maxmathsup by imad last updated on 19/Feb/19
let U_n =∫_(1/n) ^1 (√(x^2 +(3/n)))dx   .calculate lim_(n→+∞) U_n
letUn=1n1x2+3ndx.calculatelimn+Un
Commented by maxmathsup by imad last updated on 19/Feb/19
we have U_n =∫_R  (√(x^2  +(3/n))) χ_(](1/n),1]) (x)dx =∫_R f(n)dx with  f_n (x) =(√(x^2  +(3/n)))χ_(](1/n),1]) (x)dx    the sequence of functions f_n (x) verify  f_n (x)→^(cs)  x    on ]0,1]  and  ∣f_n (x)∣=f_n (x) ≤(√(x^2  +1))   ∀x∈]0,1]  theorem of  convergence dominee give  lim_(n→+∞)  ∫_R f_n (x)dx  =∫_R  lim_(n→+∞) f_n (x)dx =∫_0 ^1 x dx =[(x^2 /2)]_0 ^1 =(1/2)  ⇒lim_(n→+∞) U_n =(1/2) .
wehaveUn=Rx2+3nχ]1n,1](x)dx=Rf(n)dxwithfn(x)=x2+3nχ]1n,1](x)dxthesequenceoffunctionsfn(x)verifyfn(x)csxon]0,1]andfn(x)∣=fn(x)x2+1x]0,1]theoremofconvergencedomineegivelimn+Rfn(x)dx=Rlimn+fn(x)dx=01xdx=[x22]01=12limn+Un=12.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Feb/19
∫_(1/n) ^1 (√(x^2 +((√(3/n)) )^2 ))  dx  formula  ∫(√(x^2 +a^2 )) dx=(x/2)(√(x^2 +a^2 )) +(a^2 /2)ln(x+(√(x^2 +a^2 )) )  =∣(x/2)(√(x^2 +(3/n))) +(3/(n×2))ln(x+(√(x^2 +(3/n))) )∣_(1/n) ^1   =[{(1/2)(√(1+(3/n))) +(3/(2n))ln(1+(√(1+(3/n))) }−{(1/(2n))(√((1/n^2 )+(3/n))) +(3/(2n))ln((1/n)+(√((1/n^2 )+(3/n))) )]  when n→∞  (1/2)×1=(1/2)
1n1x2+(3n)2dxformulax2+a2dx=x2x2+a2+a22ln(x+x2+a2)=∣x2x2+3n+3n×2ln(x+x2+3n)1n1=[{121+3n+32nln(1+1+3n}{12n1n2+3n+32nln(1n+1n2+3n)]whenn12×1=12

Leave a Reply

Your email address will not be published. Required fields are marked *