let-U-n-1-n-1-x-2-3-n-dx-calculate-lim-n-U-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 55214 by maxmathsup by imad last updated on 19/Feb/19 letUn=∫1n1x2+3ndx.calculatelimn→+∞Un Commented by maxmathsup by imad last updated on 19/Feb/19 wehaveUn=∫Rx2+3nχ]1n,1](x)dx=∫Rf(n)dxwithfn(x)=x2+3nχ]1n,1](x)dxthesequenceoffunctionsfn(x)verifyfn(x)→csxon]0,1]and∣fn(x)∣=fn(x)⩽x2+1∀x∈]0,1]theoremofconvergencedomineegivelimn→+∞∫Rfn(x)dx=∫Rlimn→+∞fn(x)dx=∫01xdx=[x22]01=12⇒limn→+∞Un=12. Answered by tanmay.chaudhury50@gmail.com last updated on 19/Feb/19 ∫1n1x2+(3n)2dxformula∫x2+a2dx=x2x2+a2+a22ln(x+x2+a2)=∣x2x2+3n+3n×2ln(x+x2+3n)∣1n1=[{121+3n+32nln(1+1+3n}−{12n1n2+3n+32nln(1n+1n2+3n)]whenn→∞12×1=12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-120748Next Next post: Question-55217 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.