Menu Close

let-U-n-1-n-1-x-2-x-1-x-2-x-1-dx-n-gt-0-1-calculate-lim-n-U-n-2-find-nature-of-U-n-




Question Number 63507 by mathmax by abdo last updated on 05/Jul/19
let U_n =∫_(1/n) ^1 ((√(x^2 +x+1)) −(√(x^2 −x+1)))dx   (n>0)  1)calculate lim_(n→+∞)   U_n   2)  find nature of  Σ U_n
letUn=1n1(x2+x+1x2x+1)dx(n>0)1)calculatelimn+Un2)findnatureofΣUn
Answered by MJS last updated on 05/Jul/19
lim_(n→+∞) U_n =∫_0 ^1 ((√(x^2 +x+1))−(√(x^2 −x+1)))dx  ∫(√(x^2 ±x+1))dx=(1/2)∫(√((2x±1)^2 +3))dx=       [t=sinh^(−1)  ((2x±1)/( (√3))) → dx=(√(x^2 ±x+1))dt]  =(3/4)∫(cosh^2  t)dt=(3/8)∫(1+cosh 2t)dt=  =(3/8)t+(3/(16))sinh 2t  ∫((√(x^2 +x+1))−(√(x^2 −x+1)))dx=  =(3/8)(sinh^(−1)  ((2x+1)/( (√3))) −sinh^(−1)  ((2x−1)/( (√3))))+(1/4)((2x+1)(√(x^2 +x+1))−(2x−1)(√(x^2 −x+1)))+C  lim_(n→+∞) U_n =∫_0 ^1 ((√(x^2 +x+1))−(√(x^2 −x+1)))dx=  =−((3−3(√3))/4)+(3/8)sinh^(−1)  (√3) −(9/8)sinh^(−1)  ((√3)/3) ≈.424928  [=−((3−3(√3))/4)+(3/8)ln (3+2(√3)) −(3/4)ln 3]  ΣU_n =+∞
limn+Un=10(x2+x+1x2x+1)dxx2±x+1dx=12(2x±1)2+3dx=[t=sinh12x±13dx=x2±x+1dt]=34(cosh2t)dt=38(1+cosh2t)dt==38t+316sinh2t(x2+x+1x2x+1)dx==38(sinh12x+13sinh12x13)+14((2x+1)x2+x+1(2x1)x2x+1)+Climn+Un=10(x2+x+1x2x+1)dx==3334+38sinh1398sinh133.424928[=3334+38ln(3+23)34ln3]ΣUn=+
Commented by mathmax by abdo last updated on 05/Jul/19
thank you sir mjs for those hard works.
thankyousirmjsforthosehardworks.
Commented by MJS last updated on 05/Jul/19
you′re welcome. you know I love integrals...
yourewelcome.youknowIloveintegrals

Leave a Reply

Your email address will not be published. Required fields are marked *