Menu Close

let-u-n-1-n-2-k-1-n-n-2-k-2-1-n-determine-lim-n-u-n-




Question Number 107288 by mathmax by abdo last updated on 09/Aug/20
let u_n =(1/n^2 )Π_(k=1) ^n (n^2  +k^2 )^(1/n)   determine lim_(n→+∞) u_n
letun=1n2k=1n(n2+k2)1ndeterminelimn+un
Answered by Ar Brandon last updated on 13/Aug/20
u_n =(1/n^2 )Π_(k=1) ^n (n^2 +k^2 )^(1/n)   ln(u_n )=−2ln(n)+lnΠ_(k=1) ^n (n^2 +k^2 )^(1/n)                 =−2ln(n)+(1/n)Σ_(k=1) ^n ln(n^2 +k^2 )                =−2ln(n)+(1/n)Σ_(k=1) ^n [2ln(n)+ln(1+(k^2 /n^2 ))]                =−2ln(n)+2ln(n)+(1/n)Σ_(k=1) ^n ln(1+(k^2 /n^2 ))  lim_(n→∞) ln(u_n )=lim_(n→∞) (1/n)Σ_(k=1) ^n ln(1+(k^2 /n^2 ))                          =∫_0 ^1 ln(1+x^2 )dx                          =[ln(1+x^2 )∫dx−∫{((d ln(1+x^2 ))/dx)∙∫dx}dx]_0 ^1                           =[xln(1+x^2 )−∫((2x^2 )/(1+x^2 ))dx]_0 ^1 =ln2−2∫_0 ^1 {1−(1/(1+x^2 ))}dx                          =ln2−2+(π/2)  ⇒lim_(n→∞) u_n =e^(ln2−2+(π/2)) =2e^((π/2)−2)
un=1n2nk=1(n2+k2)1nln(un)=2ln(n)+lnnk=1(n2+k2)1/n=2ln(n)+1nnk=1ln(n2+k2)=2ln(n)+1nnk=1[2ln(n)+ln(1+k2n2)]=2ln(n)+2ln(n)+1nnk=1ln(1+k2n2)limlnn(un)=limn1nnk=1ln(1+k2n2)=01ln(1+x2)dx=[ln(1+x2)dx{dln(1+x2)dxdx}dx]01=[xln(1+x2)2x21+x2dx]01=ln2201{111+x2}dx=ln22+π2Double subscripts: use braces to clarify

Leave a Reply

Your email address will not be published. Required fields are marked *