Menu Close

let-U-n-1-n-2-n-x-1-x-dx-with-n-3-1-calculate-and-determine-lim-n-U-n-2-study-the-convergence-of-U-n-




Question Number 65004 by mathmax by abdo last updated on 24/Jul/19
let U_n = ∫_(1/n) ^(2/n)  Γ(x)Γ(1−x)dx    with n≥3  1) calculate and determine lim_(n→+∞)  U_n   2) study the convergence of Σ U_n
letUn=1n2nΓ(x)Γ(1x)dxwithn31)calculateanddeterminelimn+Un2)studytheconvergenceofΣUn
Commented by mathmax by abdo last updated on 24/Jul/19
1) we have Γ(x).Γ(1−x) =(π/(sin(πx))) ⇒U_n =∫_(1/n) ^(2/n)  (π/(sin(πx)))dx  =_(πx =t)     π ∫_(π/n) ^((2π)/n)    (dt/(π sint)) =∫_(π/n) ^((2π)/n)   (dt/(sint)) =_(tan((t/2))=u)     ∫_(tan((π/(2n)))) ^(tan((π/n)))   (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  = ∫_(tan((π/(2n)))) ^(tan((π/n)))    (du/u) =[ln∣u∣]_(tan((π/(2n)))) ^(tan((π/n)))  =ln∣((tan((π/n)))/(tan((π/(2n)))))∣ ⇒ U_n =ln∣((tan((π/n)))/(tan((π/(2n)))))∣  we  have   tan((π/n)) ∼(π/n)   and tan((π/(2n))) ∼ (π/(2n))  ⇒  ((tan((π/n)))/(tan((π/(2n ))))) ∼(π/n) ((2n)/π) =2 ⇒lim_(n→+∞)   U_n =ln(2)  2) lim_(n→+∞)  U_n  ≠0  ⇒Σ U_n    diverges.
1)wehaveΓ(x).Γ(1x)=πsin(πx)Un=1n2nπsin(πx)dx=πx=tππn2πndtπsint=πn2πndtsint=tan(t2)=utan(π2n)tan(πn)12u1+u22du1+u2=tan(π2n)tan(πn)duu=[lnu]tan(π2n)tan(πn)=lntan(πn)tan(π2n)Un=lntan(πn)tan(π2n)wehavetan(πn)πnandtan(π2n)π2ntan(πn)tan(π2n)πn2nπ=2limn+Un=ln(2)2)limn+Un0ΣUndiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *