let-U-n-1-n-2-n-x-1-x-dx-with-n-3-1-calculate-and-determine-lim-n-U-n-2-study-the-convergence-of-U-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65004 by mathmax by abdo last updated on 24/Jul/19 letUn=∫1n2nΓ(x)Γ(1−x)dxwithn⩾31)calculateanddeterminelimn→+∞Un2)studytheconvergenceofΣUn Commented by mathmax by abdo last updated on 24/Jul/19 1)wehaveΓ(x).Γ(1−x)=πsin(πx)⇒Un=∫1n2nπsin(πx)dx=πx=tπ∫πn2πndtπsint=∫πn2πndtsint=tan(t2)=u∫tan(π2n)tan(πn)12u1+u22du1+u2=∫tan(π2n)tan(πn)duu=[ln∣u∣]tan(π2n)tan(πn)=ln∣tan(πn)tan(π2n)∣⇒Un=ln∣tan(πn)tan(π2n)∣wehavetan(πn)∼πnandtan(π2n)∼π2n⇒tan(πn)tan(π2n)∼πn2nπ=2⇒limn→+∞Un=ln(2)2)limn→+∞Un≠0⇒ΣUndiverges. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-2pi-ln-x-2-2xcos-1-d-Next Next post: lim-x-0-e-x-2-2-cos-x-x-3-tan-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.