Menu Close

let-u-n-1-n-k-1-n-1-n-4k-find-lim-n-u-n-




Question Number 40149 by maxmathsup by imad last updated on 16/Jul/18
let u_n = (1/( (√n))) Σ_(k=1) ^n   (1/( (√(n+4k))))  find lim_(n→+∞)  u_n
letun=1nk=1n1n+4kfindlimn+un
Commented by math khazana by abdo last updated on 17/Jul/18
we have u_n = (1/n) Σ_(k=1) ^n    (1/( (√(1+4(k/n)))))  , u_n  is a Rieman  sum  and lim_(n→+∞)  u_n = ∫_0 ^1     (dx/( (√(1+4x))))  =[(1/2)(√(1+4x))]_0 ^1  =(1/2)((√5)  −1)
wehaveun=1nk=1n11+4kn,unisaRiemansumandlimn+un=01dx1+4x=[121+4x]01=12(51)

Leave a Reply

Your email address will not be published. Required fields are marked *