Menu Close

let-u-n-1-n-k-1-n-1-n-4k-find-lim-n-u-n-




Question Number 40149 by maxmathsup by imad last updated on 16/Jul/18
let u_n = (1/( (√n))) Σ_(k=1) ^n   (1/( (√(n+4k))))  find lim_(n→+∞)  u_n
$${let}\:{u}_{{n}} =\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\:\sqrt{{n}+\mathrm{4}{k}}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$
Commented by math khazana by abdo last updated on 17/Jul/18
we have u_n = (1/n) Σ_(k=1) ^n    (1/( (√(1+4(k/n)))))  , u_n  is a Rieman  sum  and lim_(n→+∞)  u_n = ∫_0 ^1     (dx/( (√(1+4x))))  =[(1/2)(√(1+4x))]_0 ^1  =(1/2)((√5)  −1)
$${we}\:{have}\:{u}_{{n}} =\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}\frac{{k}}{{n}}}}\:\:,\:{u}_{{n}} \:{is}\:{a}\:{Rieman} \\ $$$${sum}\:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{4}{x}}} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\mathrm{4}{x}}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{5}}\:\:−\mathrm{1}\right)\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *