Menu Close

let-U-n-1-nx-n-1-x-x-3-dx-with-n-1-1-find-U-n-interms-of-n-2-find-lim-n-U-n-3-study-the-serie-n-1-U-n-




Question Number 61232 by maxmathsup by imad last updated on 30/May/19
let U_n =∫_1 ^(+∞)    (([nx]−[(n−1)x])/x^3 ) dx  with n≥1  1) find U_n  interms of n  2) find lim_(n→+∞)  U_n   3) study the serie Σ_(n=1) ^∞  U_n
letUn=1+[nx][(n1)x]x3dxwithn11)findUnintermsofn2)findlimn+Un3)studytheserien=1Un
Commented by maxmathsup by imad last updated on 01/Jun/19
1) we have U_n =∫_1 ^(+∞)   (([nx])/x^3 )dx −∫_1 ^(+∞)   (([(n−1)x])/x^3 ) dx   ∫_1 ^(+∞)    (([nx])/x^3 ) dx =_(nx=t)      n^3 ∫_n ^(+∞)   (([t])/t^3 ) (dt/n) =n^2  ∫_n ^(+∞)   (([t])/t^3 ) dt  =n^2  Σ_(k=n) ^(+∞)   ∫_k ^(k+1)   (k/t^3 ) dt =n^2  Σ_(k=n) ^∞  k ∫_k ^(k+1)  t^(−3) dt =n^2 Σ_(k=n) ^∞ k[−(1/2) t^(−2) ]_k ^(k+1)   =−(n^2 /2) Σ_(k=n) ^∞  k{  (1/((k+1)^2 )) −(1/k^2 )} =−(n^2 /2){ Σ_(k=n) ^∞   (k/((k+1)^2 )) −Σ_(k=n) ^∞  (1/k)}  we have  Σ_(k=n) ^∞  (k/((k+1)^2 )) =Σ_(k=n+1) ^∞   ((k−1)/k^2 ) =Σ_(k=n+1) ^∞  (1/k) −Σ_(k=n+1) ^∞  (1/k^2 ) ⇒  ∫_1 ^(+∞)   (([nx])/x^3 ) dx =−(n^2 /2){ Σ_(k=n) ^∞  (1/k) −(1/(n+1)) −Σ_(k=n+1) ^∞  (1/k^2 ) −Σ_(k=n) ^∞  (1/k)}  =(n^2 /2) Σ_(k=n+1) ^∞  (1/k^2 ) + (n^2 /(2(n+1)))  ∫_1 ^∞    (([(n−1)x])/x^3 ) dx =_((n−1)x =t)   (n−1)^3     ∫_(n−1) ^(+∞)    (([t])/t^3 ) (dt/(n−1))  =(n−1)^2  ∫_(n−1) ^(+∞)   (([t])/t^3 ) dt =(n−1)^2  Σ_(k=n−1) ^∞  ∫_k ^(k+1)  (k/t^3 ) dt  =(n−1)^2  Σ_(k=n−1) ^∞  k ∫_k ^(k+1)   (dt/t^(−3) ) =(n−1)^2  Σ_(k=n−1) ^∞  k[−(1/(2t^2 ))]_m ^(k+1)   =−(((n−1)^2 )/2) Σ_(k=n−1) ^∞  k{ (1/((k+1)^2 )) −(1/k^2 )} =−(((n−1)^2 )/2){ Σ_(k=n−1) ^∞  (k/((k+1)^2 )) −Σ_(k=n−1) ^∞  (1/k)}  Σ_(k=n−1) ^∞  (k/((k+1)^2 ))  =Σ_(k=n) ^∞   ((k−1)/k^2 ) =Σ_(k=n) ^∞  (1/k) −Σ_(k=n) ^∞  (1/k^2 )  ⇒  ∫_1 ^∞   (([(n−1)x])/x^3 ) dx =−(((n−1)^2 )/2){ Σ_(k=n) ^∞  (1/k) −Σ_(k=n) ^∞  (1/k^2 ) −(1/(n−1)) −Σ_(k=n) ^∞  (1/k)}  =−(((n−1)^2 )/2){−Σ_(k=n) ^∞  (1/k^2 ) −(1/(n−1)) } =(((n−1)^2 )/2) Σ_(k=n) ^∞  (1/k^2 ) +((n−1)/2) ⇒  U_n =(n^2 /2) Σ_(k=n+1) ^∞  (1/k^2 ) +(n^2 /(2(n+1))) −(((n−1)^2 )/2) Σ_(k=n) ^∞  (1/k^2 ) −((n−1)/2) .
1)wehaveUn=1+[nx]x3dx1+[(n1)x]x3dx1+[nx]x3dx=nx=tn3n+[t]t3dtn=n2n+[t]t3dt=n2k=n+kk+1kt3dt=n2k=nkkk+1t3dt=n2k=nk[12t2]kk+1=n22k=nk{1(k+1)21k2}=n22{k=nk(k+1)2k=n1k}wehavek=nk(k+1)2=k=n+1k1k2=k=n+11kk=n+11k21+[nx]x3dx=n22{k=n1k1n+1k=n+11k2k=n1k}=n22k=n+11k2+n22(n+1)1[(n1)x]x3dx=(n1)x=t(n1)3n1+[t]t3dtn1=(n1)2n1+[t]t3dt=(n1)2k=n1kk+1kt3dt=(n1)2k=n1kkk+1dtt3=(n1)2k=n1k[12t2]mk+1=(n1)22k=n1k{1(k+1)21k2}=(n1)22{k=n1k(k+1)2k=n11k}k=n1k(k+1)2=k=nk1k2=k=n1kk=n1k21[(n1)x]x3dx=(n1)22{k=n1kk=n1k21n1k=n1k}=(n1)22{k=n1k21n1}=(n1)22k=n1k2+n12Un=n22k=n+11k2+n22(n+1)(n1)22k=n1k2n12.
Commented by maxmathsup by imad last updated on 02/Jun/19
we have ξ(2) =Σ_(k=1) ^∞  (1/k^2 ) =Σ_(k=1) ^n  (1/k^2 ) +Σ_(k=n+1) ^∞  (1/k^2 ) =ξ_n (2) +Σ_(k=n+1) ^∞  (1/k^2 ) ⇒  Σ_(k=n+1) ^∞  (1/k^2 ) =ξ(2)−ξ_n (2)  also  Σ_(k=n) ^∞  (1/k^2 ) =ξ(2)−ξ_(n−1) (2) ⇒  U_n =(n^2 /2)( ξ(2)−ξ_n (2))−(((n−1)^2 )/2) (ξ(2)−ξ_(n−1) (2)) +(n^2 /(2(n+1))) −((n−1)/2)  =((n^2 −(n−1)^2 )/2)ξ(2) −(n^2 /2)ξ_n (2)−(((n−1)^2 )/2) ξ_(n−1) (2)  +((n^2 −(n−1)(n+1))/(2(n+1)))  =((2n−1)/2) ξ(2) −(n^2 /2)( ξ_(n−1) (2) +(1/n^2 ))−(((n−1)^2 )/2) ξ_(n−1) (2)  + (1/(2(n+1)))  =(n−(1/2))ξ(2) −((n^2  +n^2 −2n+1)/2) ξ_(n−1) (2)−(n^2 /2) ξ_(n−1) (2) +(1/(2(n+1)))  =(n−(1/2))ξ(2)−((2n^2 −2n +1)/2) ξ_(n−1) (2)−(n^2 /2) ξ_(n−1) (2)+(1/(2(n+1)))
wehaveξ(2)=k=11k2=k=1n1k2+k=n+11k2=ξn(2)+k=n+11k2k=n+11k2=ξ(2)ξn(2)alsok=n1k2=ξ(2)ξn1(2)Un=n22(ξ(2)ξn(2))(n1)22(ξ(2)ξn1(2))+n22(n+1)n12=n2(n1)22ξ(2)n22ξn(2)(n1)22ξn1(2)+n2(n1)(n+1)2(n+1)=2n12ξ(2)n22(ξn1(2)+1n2)(n1)22ξn1(2)+12(n+1)=(n12)ξ(2)n2+n22n+12ξn1(2)n22ξn1(2)+12(n+1)=(n12)ξ(2)2n22n+12ξn1(2)n22ξn1(2)+12(n+1)
Commented by maxmathsup by imad last updated on 02/Jun/19
ξ_n (x) =Σ_(k=1) ^n  (1/k^x )    with x>1
ξn(x)=k=1n1kxwithx>1

Leave a Reply

Your email address will not be published. Required fields are marked *