Question Number 61232 by maxmathsup by imad last updated on 30/May/19
![let U_n =∫_1 ^(+∞) (([nx]−[(n−1)x])/x^3 ) dx with n≥1 1) find U_n interms of n 2) find lim_(n→+∞) U_n 3) study the serie Σ_(n=1) ^∞ U_n](https://www.tinkutara.com/question/Q61232.png)
Commented by maxmathsup by imad last updated on 01/Jun/19
![1) we have U_n =∫_1 ^(+∞) (([nx])/x^3 )dx −∫_1 ^(+∞) (([(n−1)x])/x^3 ) dx ∫_1 ^(+∞) (([nx])/x^3 ) dx =_(nx=t) n^3 ∫_n ^(+∞) (([t])/t^3 ) (dt/n) =n^2 ∫_n ^(+∞) (([t])/t^3 ) dt =n^2 Σ_(k=n) ^(+∞) ∫_k ^(k+1) (k/t^3 ) dt =n^2 Σ_(k=n) ^∞ k ∫_k ^(k+1) t^(−3) dt =n^2 Σ_(k=n) ^∞ k[−(1/2) t^(−2) ]_k ^(k+1) =−(n^2 /2) Σ_(k=n) ^∞ k{ (1/((k+1)^2 )) −(1/k^2 )} =−(n^2 /2){ Σ_(k=n) ^∞ (k/((k+1)^2 )) −Σ_(k=n) ^∞ (1/k)} we have Σ_(k=n) ^∞ (k/((k+1)^2 )) =Σ_(k=n+1) ^∞ ((k−1)/k^2 ) =Σ_(k=n+1) ^∞ (1/k) −Σ_(k=n+1) ^∞ (1/k^2 ) ⇒ ∫_1 ^(+∞) (([nx])/x^3 ) dx =−(n^2 /2){ Σ_(k=n) ^∞ (1/k) −(1/(n+1)) −Σ_(k=n+1) ^∞ (1/k^2 ) −Σ_(k=n) ^∞ (1/k)} =(n^2 /2) Σ_(k=n+1) ^∞ (1/k^2 ) + (n^2 /(2(n+1))) ∫_1 ^∞ (([(n−1)x])/x^3 ) dx =_((n−1)x =t) (n−1)^3 ∫_(n−1) ^(+∞) (([t])/t^3 ) (dt/(n−1)) =(n−1)^2 ∫_(n−1) ^(+∞) (([t])/t^3 ) dt =(n−1)^2 Σ_(k=n−1) ^∞ ∫_k ^(k+1) (k/t^3 ) dt =(n−1)^2 Σ_(k=n−1) ^∞ k ∫_k ^(k+1) (dt/t^(−3) ) =(n−1)^2 Σ_(k=n−1) ^∞ k[−(1/(2t^2 ))]_m ^(k+1) =−(((n−1)^2 )/2) Σ_(k=n−1) ^∞ k{ (1/((k+1)^2 )) −(1/k^2 )} =−(((n−1)^2 )/2){ Σ_(k=n−1) ^∞ (k/((k+1)^2 )) −Σ_(k=n−1) ^∞ (1/k)} Σ_(k=n−1) ^∞ (k/((k+1)^2 )) =Σ_(k=n) ^∞ ((k−1)/k^2 ) =Σ_(k=n) ^∞ (1/k) −Σ_(k=n) ^∞ (1/k^2 ) ⇒ ∫_1 ^∞ (([(n−1)x])/x^3 ) dx =−(((n−1)^2 )/2){ Σ_(k=n) ^∞ (1/k) −Σ_(k=n) ^∞ (1/k^2 ) −(1/(n−1)) −Σ_(k=n) ^∞ (1/k)} =−(((n−1)^2 )/2){−Σ_(k=n) ^∞ (1/k^2 ) −(1/(n−1)) } =(((n−1)^2 )/2) Σ_(k=n) ^∞ (1/k^2 ) +((n−1)/2) ⇒ U_n =(n^2 /2) Σ_(k=n+1) ^∞ (1/k^2 ) +(n^2 /(2(n+1))) −(((n−1)^2 )/2) Σ_(k=n) ^∞ (1/k^2 ) −((n−1)/2) .](https://www.tinkutara.com/question/Q61383.png)
Commented by maxmathsup by imad last updated on 02/Jun/19

Commented by maxmathsup by imad last updated on 02/Jun/19
