Menu Close

let-U-n-a-sequence-U-0-a-and-U-n-nU-n-1-2-n-gt-0-calculate-U-n-interms-of-n-




Question Number 65134 by turbo msup by abdo last updated on 25/Jul/19
let U_n  a sequence U_0 =a and  U_n =nU_(n−1)    −2   (n>0)  calculate U_n  interms of n.
letUnasequenceU0=aandUn=nUn12(n>0)calculateUnintermsofn.
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
     Let  U_n = n!V_n    now  let look for V_n   the equality  gives  n!V_(n ) −n[(n−1)V_(n−1) ]=−2   then  ∀ k >1     V_k −V_(k−1) = ((−2)/(k!))   then  Σ_(k=1) ^n (V_k  −V_(k−1) )= Σ_(k=1) ^n  ((−2)/(k!))         finally  V_n  = V_0  −Σ_(k=1) ^n (2/(k!))  V_0 =U_0 =a  so  U_n = a.n! −n!Σ_(k=1) ^n (2/(k!))
LetUn=n!VnnowletlookforVntheequalitygivesn!Vnn[(n1)Vn1]=2thenk>1VkVk1=2k!thennk=1(VkVk1)=nk=12k!finallyVn=V0nk=12k!V0=U0=asoUn=a.n!n!nk=12k!
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
     Let  U_n = n!V_n    now  let look for V_n   the equality  gives  n!V_(n ) −n[(n−1)V_(n−1) ]=−2   then  ∀ k >1     V_k −V_(k−1) = ((−2)/(k!))   then  Σ_(k=1) ^n (V_k  −V_(k−1) )= Σ_(k=1) ^n  ((−2)/(k!))         finally  V_n  = V_0  −Σ_(k=1) ^n (2/(k!))  V_0 =U_0 =a  so  U_n = a.n! −n!Σ_(k=1) ^n (2/(k!))
LetUn=n!VnnowletlookforVntheequalitygivesn!Vnn[(n1)Vn1]=2thenk>1VkVk1=2k!thennk=1(VkVk1)=nk=12k!finallyVn=V0nk=12k!V0=U0=asoUn=a.n!n!nk=12k!
Commented by mathmax by abdo last updated on 25/Jul/19
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 26/Jul/19
let V_n =(U_n /(n!)) ⇒V_(n+1) −V_n =(U_(n+1) /((n+1)!)) −(U_n /(n!)) =(((n+1)U_n −2)/((n+1)!)) −(U_n /(n!))  =(U_n /(n!)) −(2/((n+1)!)) −(U_n /(n!)) =−(2/((n+1)!)) ⇒  Σ_(k=0) ^(n−1)  (V_(k+1) −V_k ) =−2 Σ_(k=0) ^(n−1)  (1/((k+1)!)) ⇒  V_1 −V_0  +V_2 −V_1  +....+V_n −V_(n−1) =−2 Σ_(k=1) ^n  (1/(k!)) ⇒  V_n =V_0  −2Σ_(k=1) ^n  (1/(k!)) =a −2 Σ_(k=1) ^n  (1/(k!))  we have U_n =n!V_n  ⇒  U_n =n!(a−2 Σ_(k=1) ^n  (1/(k!)))  remark  we see that lim_(n→+∞)  (U_n /(n!)) =a+2 −2e
letVn=Unn!Vn+1Vn=Un+1(n+1)!Unn!=(n+1)Un2(n+1)!Unn!=Unn!2(n+1)!Unn!=2(n+1)!k=0n1(Vk+1Vk)=2k=0n11(k+1)!V1V0+V2V1+.+VnVn1=2k=1n1k!Vn=V02k=1n1k!=a2k=1n1k!wehaveUn=n!VnUn=n!(a2k=1n1k!)remarkweseethatlimn+Unn!=a+22e

Leave a Reply

Your email address will not be published. Required fields are marked *