Menu Close

let-u-n-and-v-n-be-sequences-defined-by-u-0-9-u-n-1-1-2-u-n-3-v-n-u-n-6-Calculate-P-n-i-0-n-V-i-in-terms-of-n-the-deduce-Q-n-i-0-n-u-i-using-the-above-expr




Question Number 98380 by Rio Michael last updated on 13/Jun/20
let {u_n } and {v_n } be sequences defined by   u_0  = 9, u_(n+1)  = (1/2)u_n −3.  v_n  = u_n  + 6.  Calculate P_n  = Σ_(i=0) ^n V_i  in terms of n, the deduce Q_n  = Σ_(i=0) ^n u_i   using the above expressions find  lim_(x→∞)  Q_n  .
let{un}and{vn}besequencesdefinedbyu0=9,un+1=12un3.vn=un+6.CalculatePn=ni=0Viintermsofn,thededuceQn=ni=0uiusingtheaboveexpressionsfindlimxQn.
Answered by Aziztisffola last updated on 13/Jun/20
P_n =30−15((1/2))^n   Q_n =2(1−((1/2))^(n+1) )−6(n+1)  lim_(n→∞) Q_n =−∞
Pn=3015(12)nQn=2(1(12)n+1)6(n+1)Double subscripts: use braces to clarify
Answered by mr W last updated on 13/Jun/20
u_(n+1) =(1/2)u_n −3  u_(n+1) +6=(1/2)(u_n +6)  ⇒u_n +6=(u_0 +6)((1/2))^n =((15)/2^n )  ⇒u_n =((15)/2^n )−6  ⇒v_n =((15)/2^n )  P_n =Σ_(i=0) ^n v_i =15×((1−(1/2^(n+1) ))/(1−(1/2)))=30(1−(1/2^(n+1) ))  Q_n =Σ_(i=0) ^n u_i =Σ_(i=0) ^n (v_i −6)=30(1−(1/2^(n+1) ))−6(n+1)  lim_(n→∞) Q_n =−∞
un+1=12un3un+1+6=12(un+6)un+6=(u0+6)(12)n=152nun=152n6vn=152nPn=ni=0vi=15×112n+1112=30(112n+1)Qn=ni=0ui=ni=0(vi6)=30(112n+1)6(n+1)limnQn=
Commented by Rio Michael last updated on 13/Jun/20
perfect now sir thanks
perfectnowsirthanks
Commented by Rio Michael last updated on 13/Jun/20
sir that is correct. thanks to you both.  my worry is: why (n +1) ?  i know ΣV_i  = Σu_i  + Σ6 ⇒ Σu_i  = ΣV_i  −Σ6   why will it not equal 30[1−((1/2))^n ]−6n  instead it equals   30 [1−((1/2))^(n+1) ]−6n−6
sirthatiscorrect.thankstoyouboth.myworryis:why(n+1)?iknowΣVi=Σui+Σ6Σui=ΣViΣ6whywillitnotequal30[1(12)n]6ninsteaditequals30[1(12)n+1]6n6
Commented by mr W last updated on 13/Jun/20
because i=0 to n, totally n+1 times,  and P_0 ≠0, Q_0 ≠0.  Σ_(i=0) ^n P_i ≠Σ_(i=1) ^n P_i   Σ_(i=0) ^n Q_i ≠Σ_(i=1) ^n Q_i
becausei=0ton,totallyn+1times,andP00,Q00.ni=0Pini=1Pini=0Qini=1Qi
Answered by mathmax by abdo last updated on 13/Jun/20
v_n =u_(n ) +6 ⇒v_(n+1)  =u_(n+1) +6 =(1/2)u_n −3 +6 =(1/2)u_n +3 =(1/2)(u_n +6) =(1/2)v_n   ⇒v_n  is g.prog. ⇒v_n =v_0 ((1/2))^n   we have v_0 =u_0  +6 =15 ⇒  v_n =((15)/2^n )    we have P_n =Σ_(i=0) ^n  v_i =v_0 ×((1−q^(n+1) )/(1−q)) =15×((1−(1/2^(n+1) ))/(1/2))  =15(2−(2/2^(n+1) )) =15(2−(1/2^n )) ⇒P_n =30−((15)/2^n )  Q_n =Σ_(i=0) ^n  u_i =Σ_(i=0) ^n (v_i −6) =Σ_(i=0) ^n  v_i −6(n+1)  =30−((15)/2^n )−6(n+1) ⇒lim_(n→+∞)   Q_n =−∞
vn=un+6vn+1=un+1+6=12un3+6=12un+3=12(un+6)=12vnvnisg.prog.vn=v0(12)nwehavev0=u0+6=15vn=152nwehavePn=i=0nvi=v0×1qn+11q=15×112n+112=15(222n+1)=15(212n)Pn=30152nQn=i=0nui=i=0n(vi6)=i=0nvi6(n+1)=30152n6(n+1)limn+Qn=

Leave a Reply

Your email address will not be published. Required fields are marked *