Menu Close

let-u-n-e-1-1-n-n-n-2-2-n-2-1-find-lim-u-n-




Question Number 32364 by prof Abdo imad last updated on 23/Mar/18
let  u_n = (e −(1+(1/n))^n )^((√(n^2  +2))  −(√(n^2  +1)))   find  lim u_n
letun=(e(1+1n)n)n2+2n2+1findlimun
Commented by prof Abdo imad last updated on 06/Apr/18
we have A_n =(√(n^2  +2))  −(√(n^2  +1))  =n( (√(1+(2/n)))  −(√(1+(1/n)))  ) but  (√(1+(2/n))) ∼ 1+(1/n)  and (√(1+(1/n)))  ∼ 1+(1/(2n)) ⇒  A_n ∼ n+1 −n −(1/2) ⇒ A_n  ∼ (1/2)  also we have  (1+(1/n))^n  = e^(nln(1+(1/n)))   ln(1+x))^′  = (1/(1+x)) =1−x +o(x^2 ) for x∈V(o)  ln(1+x) = x −(x^2 /2) +o(x^3 ) ⇒  ln(1+(1/n)) = (1/n)  −(1/(2n^2 )) +o( (1/n^3 )) ⇒  nln(1+(1/n)) = 1 −(1/(2n)) +o((1/n^2 )) ⇒  e^(nln(1+(1/n)))   =e^(1−(1/(2n))  +o((1/n^2 )))  = e .(1−(1/(2n)) +o((1/n^2 )))⇒  e −(1 +(1/n))^n   ∼  (e/(2n)) +o( (1/n^2 )) ⇒ u_n  ∼(√( (e/(2n))))  ⇒  lim_(n→∞)  u_n  =0 .
wehaveAn=n2+2n2+1=n(1+2n1+1n)but1+2n1+1nand1+1n1+12nAnn+1n12An12alsowehave(1+1n)n=enln(1+1n)ln(1+x))=11+x=1x+o(x2)forxV(o)ln(1+x)=xx22+o(x3)ln(1+1n)=1n12n2+o(1n3)nln(1+1n)=112n+o(1n2)enln(1+1n)=e112n+o(1n2)=e.(112n+o(1n2))e(1+1n)ne2n+o(1n2)une2nlimnun=0.

Leave a Reply

Your email address will not be published. Required fields are marked *