Menu Close

let-u-n-e-nx-2-x-dx-1-calculate-u-n-2-find-n-u-n-




Question Number 47119 by math solver by abdo. last updated on 05/Nov/18
let u_n =∫_(−∞) ^∞  e^(−nx^2 +x) dx  1)calculate u_n   2)find Σ_n  u_n
$${let}\:{u}_{{n}} =\int_{−\infty} ^{\infty} \:{e}^{−{nx}^{\mathrm{2}} +{x}} {dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:\sum_{{n}} \:{u}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 05/Nov/18
1) we have u_n =∫_(−∞) ^(+∞)  e^(−{((√n)x)^2   −2 x (1/(2(√n))) +(1/(4n))−(1/(4n))}) dx   =e^(1/(4n))  ∫_(−∞) ^(+∞)   e^(−((√n)x−(1/( (√n) )))^2 ) dx =_((√n)x−(1/( (√n)))=t) e^(1/(4n))  ∫_(−∞) ^(+∞)  e^(−t^2 )  (dt/( (√n)))  =(e^(1/(4n)) /( (√n))) (√π) ⇒ u_n =((√π)/( (√n))) e^(1/(4n))  .
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{u}_{{n}} =\int_{−\infty} ^{+\infty} \:{e}^{−\left\{\left(\sqrt{{n}}{x}\right)^{\mathrm{2}} \:\:−\mathrm{2}\:{x}\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{n}}}\:+\frac{\mathrm{1}}{\mathrm{4}{n}}−\frac{\mathrm{1}}{\mathrm{4}{n}}\right\}} {dx}\: \\ $$$$={e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\sqrt{{n}}{x}−\frac{\mathrm{1}}{\:\sqrt{{n}}\:}\right)^{\mathrm{2}} } {dx}\:=_{\sqrt{{n}}{x}−\frac{\mathrm{1}}{\:\sqrt{{n}}}={t}} {e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \:\int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } \:\frac{{dt}}{\:\sqrt{{n}}} \\ $$$$=\frac{{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} }{\:\sqrt{{n}}}\:\sqrt{\pi}\:\Rightarrow\:{u}_{{n}} =\frac{\sqrt{\pi}}{\:\sqrt{{n}}}\:{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *