Menu Close

let-u-n-e-nx-2-x-dx-1-calculate-u-n-2-find-n-u-n-




Question Number 47119 by math solver by abdo. last updated on 05/Nov/18
let u_n =∫_(−∞) ^∞  e^(−nx^2 +x) dx  1)calculate u_n   2)find Σ_n  u_n
letun=enx2+xdx1)calculateun2)findnun
Commented by maxmathsup by imad last updated on 05/Nov/18
1) we have u_n =∫_(−∞) ^(+∞)  e^(−{((√n)x)^2   −2 x (1/(2(√n))) +(1/(4n))−(1/(4n))}) dx   =e^(1/(4n))  ∫_(−∞) ^(+∞)   e^(−((√n)x−(1/( (√n) )))^2 ) dx =_((√n)x−(1/( (√n)))=t) e^(1/(4n))  ∫_(−∞) ^(+∞)  e^(−t^2 )  (dt/( (√n)))  =(e^(1/(4n)) /( (√n))) (√π) ⇒ u_n =((√π)/( (√n))) e^(1/(4n))  .
1)wehaveun=+e{(nx)22x12n+14n14n}dx=e14n+e(nx1n)2dx=nx1n=te14n+et2dtn=e14nnπun=πne14n.

Leave a Reply

Your email address will not be published. Required fields are marked *