Menu Close

let-u-n-k-0-n-3k-1-1-k-1-calculate-interms-of-n-S-n-u-0-u-1-u-2-u-n-2-calculate-u-0-u-1-u-2-u-57-




Question Number 40370 by math khazana by abdo last updated on 20/Jul/18
let u_n  =Σ_(k=0) ^n (3k+1)(−1)^k   1) calculate interms of n  S_n =u_0  +u_1 +u_2 +....+u_n   2) calculate u_0  +u_1 +u_2 +....+u_(57)
letun=k=0n(3k+1)(1)k1)calculateintermsofnSn=u0+u1+u2+.+un2)calculateu0+u1+u2+.+u57
Commented by prof Abdo imad last updated on 20/Jul/18
1)we have  u_n =3Σ_(k=0) ^n k(−1)^(k )  +Σ_(k=0) ^n (−1)^k  but  Σ_(k=0) ^n (−1)^k =((1−(−1)^(n+1) )/2) =((1+(−1)^n )/2)  let p(x)=Σ_(k=0) ^n  x^k     with x≠1  we have  p^′ (x)=Σ_(k=1) ^n k x^(k−1)  ⇒x p^′ (x)=Σ_(k=1) ^n k x^k ⇒  Σ_(k=1) ^n k(−1)^k =−p^′ (−1) but p(x)=((x^(n+1) −1)/(x−1)) ⇒  p^′ (x) =((nx^(n+1) −(n+1)x^n +1)/((x−1)^2 )) ⇒  p^′ (−1) =((n(−1)^(n+1) −(n+1)(−1)^n  +1)/4) ⇒  u_n  =−(3/4){ 1−(2n+1)(−1)^n } +((1+(−1)^n )/2)  u_n =(3/4){(2n+1)(−1)^n −1} +((1+(−1)^n )/2) we have  S_n =Σ_(k=0) ^n  u_k   =(3/4) Σ_(k=0) ^n (2k+1)(−1)^k  −(3/4)Σ_(k=0) ^n (1)  +(1/2)Σ_(k=0) ^n (1) +(1/2)Σ_(k=0) ^n (−1)^k   =(3/2)Σ_(k=0) ^n k(−1)^k  +(3/4)Σ_(k=0) ^n (−1)^k −(3/4)(n+1)  +((n+1)/2) +(1/2) ((1+(−1)^n )/2)  =(3/2){((1−(2n+1)(−1)^n )/4)} +(3/4) ((1+(−1)^n )/2)  −(1/4)(n+1) +(1/4){1+(−1)^n }  S_n  =(3/8){1−(2n+1)(−1)^n } +(5/8){1+(−1)^n }  −((n+1)/4) .
1)wehaveun=3k=0nk(1)k+k=0n(1)kbutk=0n(1)k=1(1)n+12=1+(1)n2letp(x)=k=0nxkwithx1wehavep(x)=k=1nkxk1xp(x)=k=1nkxkk=1nk(1)k=p(1)butp(x)=xn+11x1p(x)=nxn+1(n+1)xn+1(x1)2p(1)=n(1)n+1(n+1)(1)n+14un=34{1(2n+1)(1)n}+1+(1)n2un=34{(2n+1)(1)n1}+1+(1)n2wehaveSn=k=0nuk=34k=0n(2k+1)(1)k34k=0n(1)+12k=0n(1)+12k=0n(1)k=32k=0nk(1)k+34k=0n(1)k34(n+1)+n+12+121+(1)n2=32{1(2n+1)(1)n4}+341+(1)n214(n+1)+14{1+(1)n}Sn=38{1(2n+1)(1)n}+58{1+(1)n}n+14.

Leave a Reply

Your email address will not be published. Required fields are marked *