Menu Close

let-u-n-k-1-n-1-k-1-prove-that-ln-n-1-u-n-ln-n-1-2-show-that-u-n-n-ln-n-




Question Number 30174 by abdo imad last updated on 18/Feb/18
let  u_n = Σ_(k=1) ^n  (1/k)  1. prove that ln(n+1)≤u_n ≤ln(n) +1  2. show that u_n   _(n→∞) ∼ ln(n)  .
$${let}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$$\mathrm{1}.\:{prove}\:{that}\:{ln}\left({n}+\mathrm{1}\right)\leqslant{u}_{{n}} \leqslant{ln}\left({n}\right)\:+\mathrm{1} \\ $$$$\mathrm{2}.\:{show}\:{that}\:{u}_{{n}} \:\:_{{n}\rightarrow\infty} \sim\:{ln}\left({n}\right)\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *