Menu Close

let-u-n-k-1-n-1-k-k-1-prove-that-u-n-is-convergente-2-find-a-equivalent-of-u-n-when-n-




Question Number 42190 by maxmathsup by imad last updated on 19/Aug/18
let   u_n =Σ_(k=1) ^n  (((−1)^k )/( (√k)))  1) prove that (u_n )is convergente  2) find a equivalent of u_n  when n→+∞
letun=k=1n(1)kk1)provethat(un)isconvergente2)findaequivalentofunwhenn+
Commented by maxmathsup by imad last updated on 21/Aug/18
1) we have lim_(n→+∞)  u_n  = Σ_(k=1) ^∞   (((−1)^k )/( (√k)))     and this serie is convergente  (alternate serie)  2) we have u_n =Σ_(p=1) ^([(n/2)])    (1/( (√(2p)))) −Σ_(p=0) ^([((n−1)/2)])  (1/( (√(2p+1)))) = Σ v_p  −Σw_p   (v_p )is decreasing ⇒ ∫_p ^(p+1)   (dx/( (√(2x)))) ≤ v_p  ≤ ∫_(p−1) ^p   (dx/( (√(2x)))) ⇒  Σ_(p=1) ^([(n/2)])   ∫_p ^(p+1)  (dx/( (√(2x)))) ≤ Σ_(p=1) ^([(n/2)])  v_p   ≤ Σ_(p=1) ^([(n/2)]) ∫_(p−1) ^p   (dx/( (√(2x))))  ⇒  ∫_1 ^([(n/2)] +1)   (dx/( (√(2x)))) ≤ Σ_(p=1) ^([(n/2)])  v_p  ≤  ∫_0 ^([(n/2)])   (dx/( (√(2x)))) ⇒  (1/( (√2)))[2(√x)]_1 ^([(n/2)]+1)  ≤ Σ_(p=1) ^([(n/2)]) v_p  ≤(1/( (√2)))[2(√x)]_0 ^([(n/2)])  ⇒ (√2){(√([(n/2)]+1))−1}≤Σ v_p ≤(√2)(√([(n/2)]))  also (w_p ) is decreasing ⇒ ∫_p ^(p+1)    (dx/( (√(2x+1)))) ≤ w_p ≤ ∫_(p−1) ^p   (dx/( (√(2x+1)))) ⇒  Σ_(p=1) ^([((n−1)/2)])   ∫_p ^(p+1)   (dx/( (√(2x+1)))) ≤ Σ_(p=1) ^([((n−1)/2)]) w_p  ≤ Σ_(p=1) ^([((n−1)/2)])   ∫_(p−1) ^p (dx/( (√(2x+1)))) ⇒  ∫_1 ^([((n−1)/2)] +1)   (dx/( (√(2x+1)))) ≤ Σ_(p=1) ^([((n−1)/2)])  w_p   ≤ ∫_0 ^([((n−1)/2)])    (dx/( (√(2x +1)))) ⇒  [(√(2x+1))]_1 ^((([n−1)/2)]+1)  ≤ Σ_(p=1) ^([((n−1)/2)])  w_p  ≤ [(√(2x+1))]_0 ^([((n−1)/2)])  ⇒  (√(2[((n−1)/2)]+2)) −(√3)≤ Σ_(p=1) ^([((n−1)/2)])  w_p  ≤(√(2[((n−1)/2)]+1))−1  ⇒  (√(2[((n−1)/2)]+2))+1−(√3)≤ Σ_(p=0) ^([((n−1)/2)])  w_p  ≤ (√(2[((n−1)/2)]+1)) −2 ⇒   (√2){(√([(n/2)]+1))−1} +2−(√(2[((n−1)/2)]+1))≤ u_n ≤ (√2)(√([(n/2)])) +(√3)−1−(√(2[((n−1)/2)]+1))  ...be continued ...
1)wehavelimn+un=k=1(1)kkandthisserieisconvergente(alternateserie)2)wehaveun=p=1[n2]12pp=0[n12]12p+1=ΣvpΣwp(vp)isdecreasingpp+1dx2xvpp1pdx2xp=1[n2]pp+1dx2xp=1[n2]vpp=1[n2]p1pdx2x1[n2]+1dx2xp=1[n2]vp0[n2]dx2x12[2x]1[n2]+1p=1[n2]vp12[2x]0[n2]2{[n2]+11}Σvp2[n2]also(wp)isdecreasingpp+1dx2x+1wpp1pdx2x+1p=1[n12]pp+1dx2x+1p=1[n12]wpp=1[n12]p1pdx2x+11[n12]+1dx2x+1p=1[n12]wp0[n12]dx2x+1[2x+1]1[n12]+1p=1[n12]wp[2x+1]0[n12]2[n12]+23p=1[n12]wp2[n12]+112[n12]+2+13p=0[n12]wp2[n12]+122{[n2]+11}+22[n12]+1un2[n2]+312[n12]+1becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *