Menu Close

let-u-n-k-1-n-1-k-k-and-H-n-k-1-n-1-k-1-calculate-u-n-interms-of-H-n-2-study-the-convergence-of-u-n-3-study-theconvergence-of-u-n-




Question Number 45792 by maxmathsup by imad last updated on 16/Oct/18
let u_n =Σ_(k=1) ^n  (((−1)^([k]) )/k)  and H_n =Σ_(k=1) ^n  (1/k)  1)calculate u_n  interms of H_n   2)study the convergence of (u_n )  3)study theconvergence of Σ u_(n.)
letun=k=1n(1)[k]kandHn=k=1n1k1)calculateunintermsofHn2)studytheconvergenceof(un)3)studytheconvergenceofΣun.
Commented by maxmathsup by imad last updated on 17/Oct/18
3) lim_(n→+∞) u_n ≠0 ⇒ Σ u_n   diverges..
3)limn+un0Σundiverges..
Commented by maxmathsup by imad last updated on 17/Oct/18
2) convergence of (u_n )?  we have u_(2n) =(1/2) H_n +(1/2) H_(n−1)  −H_(2n−1)   =(1/2)( ln(n)+γ +o((1/n)))+(1/2)(ln(n−1) +γ +o((1/n)))−ln(2n−1)−γ −o((1/n))  =ln(√(n(n+1)))−ln(2n−1) +o((1/n))=ln(((√(n^2 +n))/(2n−1)))+o((1/n))→−ln(2)(n→+∞)  u_(2n+1) =(1/2) H_n   +(1/2) H_n    −H_(2n+1) =H_n −H_(2n+1)   =ln(n) +γ −ln(2n+1)−γ +o((1/n))=ln((n/(2n+1)))+o((1/n))→−ln(2)(n→+∞)  so (u_n ) converges and lim_(n→+∞) u_n =−ln(2).
2)convergenceof(un)?wehaveu2n=12Hn+12Hn1H2n1=12(ln(n)+γ+o(1n))+12(ln(n1)+γ+o(1n))ln(2n1)γo(1n)=lnn(n+1)ln(2n1)+o(1n)=ln(n2+n2n1)+o(1n)ln(2)(n+)u2n+1=12Hn+12HnH2n+1=HnH2n+1=ln(n)+γln(2n+1)γ+o(1n)=ln(n2n+1)+o(1n)ln(2)(n+)so(un)convergesandlimn+un=ln(2).
Commented by maxmathsup by imad last updated on 17/Oct/18
we have u_n =Σ_(k=1) ^n   (((−1)^([k]) )/k) ⇒u_n =Σ_(p=1) ^([(n/2)])  (1/(2p)) −Σ_(p=0) ^([((n−1)/2)])   (1/(2p+1)) but  Σ_(p=1) ^([(n/2)])  (1/(2p)) =(1/2) H_([(n/2)])   Σ_(p=0) ^([((n−1)/2)])   (1/(2p+1)) =1 +(1/3) +(1/5) +....+(1/(2[((n−1)/2)]+1))  =1+(1/2) +(1/3) +(1/4) +.....+(1/(2[((n−1)/2)])) +(1/(2[((n−1)/2)]+1)) −(1/2)(1+(1/2) +....+(1/(2[((n−1)/2)])))  =H_(2[((n−1)/2)]+1)    −(1/2) H_([((n−1)/2)])    ⇒  u_n =(1/2) H_([(n/2)])   +(1/2) H_([((n−1)/2)]) − H_(2[((n−1)/2)]+1)
wehaveun=k=1n(1)[k]kun=p=1[n2]12pp=0[n12]12p+1butp=1[n2]12p=12H[n2]p=0[n12]12p+1=1+13+15+.+12[n12]+1=1+12+13+14+..+12[n12]+12[n12]+112(1+12+.+12[n12])=H2[n12]+112H[n12]un=12H[n2]+12H[n12]H2[n12]+1
Answered by arcana last updated on 17/Oct/18
1)como  u_n =Σ_(k=1) ^n (((−1)^k )/k)  si n=2t es par (para algun t entero positivo)    u_n =Σ_(k=1) ^(n/2)  (((−1)^(2k−1) )/(2k−1))+Σ_(k=1) ^(n/2)  (((−1)^(2k) )/(2k))  =−Σ_(k=1) ^(n/2)  (1/(2k−1)) + Σ_(k=1) ^(n/2)  (1/(2k))  =−Σ_(k=1) ^(n/2)  (1/(2k−1)) + (1/2)H_(n/2)   tomando m=2k−1, luego  =−Σ_(m=1) ^(n−1)  (1/m) + (1/2)H_(n/2) =(1/2)H_(n/2) −H_(n−1)     si n=2t−1 es impar, tenemos  u_n =Σ_(k=1) ^((n+1)/2)  (((−1)^(2k−1) )/(2k−1))+Σ_(k=1) ^((n−1)/2)  (((−1)^(2k) )/(2k))  =−Σ_(k=1) ^((n+1)/2)  (1/(2k−1)) + Σ_(k=1) ^((n−1)/2)  (1/(2k))  =−Σ_(k=1) ^((n+1)/2)  (1/(2k−1)) + (1/2)H_((n−1)/2)     tomando m=2k−1  =−Σ_(m=1) ^n  (1/m) + (1/2)H_((n−1)/2) =−H_n +(1/2)H_((n−1)/2)
1)comoun=nk=1(1)kksin=2tespar(paraalguntenteropositivo)un=n/2k=1(1)2k12k1+n/2k=1(1)2k2k=n/2k=112k1+n/2k=112k=n/2k=112k1+12Hn/2tomandom=2k1,luego=n1m=11m+12Hn/2=12Hn/2Hn1sin=2t1esimpar,tenemosun=(n+1)/2k=1(1)2k12k1+(n1)/2k=1(1)2k2k=(n+1)/2k=112k1+(n1)/2k=112k=(n+1)/2k=112k1+12H(n1)/2tomandom=2k1=nm=11m+12H(n1)/2=Hn+12H(n1)/2
Commented by maxmathsup by imad last updated on 17/Oct/18
thank you Arkana for this work...
thankyouArkanaforthiswork
Answered by arcana last updated on 17/Oct/18
3. como  (1/(1+x))=Σ_(k=0) ^∞ (−x)^k   para ∣x∣<1  integrando a ambos lados vemos que  ⇒ln (1+x)=Σ_(k=0) ^∞ (((−1)^(k+1) )/(k+1))∙x^(k+1)   con −1<x≤1. Si x=1, entonces    ln(2)=Σ_(k=0) ^∞ (((−1)^(k+1) )/(k+1))=Σu_n
3.como11+x=k=0(x)kparax∣<1integrandoaambosladosvemosqueln(1+x)=k=0(1)k+1k+1xk+1con1<x1.Six=1,entoncesln(2)=k=0(1)k+1k+1=Σun

Leave a Reply

Your email address will not be published. Required fields are marked *