Menu Close

let-u-n-k-1-n-1-k-n-2-1-verify-that-x-x-2-2-ln-1-x-x-2-prove-that-u-n-is-convergente-and-find-its-limit-




Question Number 30173 by abdo imad last updated on 18/Feb/18
let u_n = Π_(k=1) ^n  (1+(k/n^2 ))  1. verify that x−(x^2 /2) ≤ln(1+x)≤x  2. prove that (u_n ) is convergente and find its limit.
letun=k=1n(1+kn2)1.verifythatxx22ln(1+x)x2.provethat(un)isconvergenteandfinditslimit.
Commented by abdo imad last updated on 21/Feb/18
let put ϕ(t)= ln(1+x)−(x−(x^2 /2))  for x≥0 we have  ϕ^′ (t)= (1/(1+x)) −(1−x)=((1−(1−x^2 ))/(1+x))= (x^2 /(1+x)) ≥0 so ϕ is  increasing  on [0,+∞[ we have ϕ(0)=0 ≥0 ⇒ ∀ x≥0  ϕ(x)≥0  we use the same method  for the function  ψ(x)= x−ln(1+x) and we show that ψ(x)≥0  2) we have ln(u_n )= Σ_(k=1) ^n ln(1+ (k/n^2 )) but   (k/n^2 ) −(k^2 /(2n^4 )) ≤ln (1+(k/n^2 )) ≤(k/n^2 ) ⇒  Σ_(k=1) ^n (k/n^2 )− Σ_(k=1) ^n   (k^2 /(2n^4 )) ≤ Σ_(k=1) ^n ln(1+(k/n^2 ))≤ Σ_(k=1) ^n  (k/n^2 ) ⇒  (1/(2n^2 ))n(n+1) −(1/(2n^4 ))((n(n+1)(2n+1))/6)≤ln(u_n )≤ (1/(2n^2 ))n(n+1)⇒  ((n+1)/(2n)) −(1/(12n^3 ))(n+1)(2n+1) ≤ln(u_n )≤ ((n+1)/(2n))  but  lim_(n→∞)  ((n+1)/(2n)) −(((n+1)(2n+1))/(12n^3 ))= (1/2) and lim_(n→∞) ((n+1)/(2n))=(1/2)  ⇒ lim_(n→∞) ln(u_n )=(1/2) ⇒ lim_(n→∞) u_n = (√e)    .
letputφ(t)=ln(1+x)(xx22)forx0wehaveφ(t)=11+x(1x)=1(1x2)1+x=x21+x0soφisincreasingon[0,+[wehaveφ(0)=00x0φ(x)0weusethesamemethodforthefunctionψ(x)=xln(1+x)andweshowthatψ(x)02)wehaveln(un)=k=1nln(1+kn2)butkn2k22n4ln(1+kn2)kn2k=1nkn2k=1nk22n4k=1nln(1+kn2)k=1nkn212n2n(n+1)12n4n(n+1)(2n+1)6ln(un)12n2n(n+1)n+12n112n3(n+1)(2n+1)ln(un)n+12nbutlimnn+12n(n+1)(2n+1)12n3=12andlimnn+12n=12limnln(un)=12limnun=e.

Leave a Reply

Your email address will not be published. Required fields are marked *