Question Number 45957 by maxmathsup by imad last updated on 19/Oct/18
$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!\left({n}−{k}\right)!}\:\:{calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} {u}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 20/Oct/18
$${we}\:{have}\:{u}_{{n}} =\frac{\mathrm{1}}{{n}!}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{{n}!}{{k}!\left({n}−{k}\right)!}\:=\frac{\mathrm{1}}{{n}!}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \\ $$$$=\frac{\mathrm{1}}{{n}!}\:\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} −\mathrm{1}\right)\:=\frac{\mathrm{1}}{{n}!}\left\{\:\mathrm{2}^{{n}} −\mathrm{1}\right\}\:=\frac{\mathrm{2}^{{n}} }{{n}!}\:−\frac{\mathrm{1}}{{n}!}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{u}_{{n}} =\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}^{{n}} }{{n}!}\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}^{{n}} }{{n}!}\:−\mathrm{1}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:+\mathrm{1} \\ $$$$={e}^{\mathrm{2}} \:−{e}\:. \\ $$
Answered by Smail last updated on 19/Oct/18
$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}!\left({n}−{k}\right)!}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}!}{{k}!\left({n}−{k}\right)!}×\frac{\mathrm{1}}{{n}!} \\ $$$$=\frac{\mathrm{1}}{{n}!}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}!}{{k}!\left({n}−{k}\right)!}=\frac{\mathrm{1}}{{n}!}\left(\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{{k}!\left({n}−{k}\right)!}−\mathrm{1}\right) \\ $$$${let}'{s}\:{take}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{{k}!\left({n}−{k}\right)!}{x}^{{k}} \\ $$$${So}\:{p}\left(\mathrm{1}\right)=\mathrm{2}^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{{k}!\left({n}−{k}\right)!} \\ $$$${u}_{{n}} =\frac{\mathrm{1}}{{n}!}\left(\mathrm{2}^{{n}} −\mathrm{1}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{u}_{{n}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{{n}} }{{n}!}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$${e}^{\mathrm{1}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!} \\ $$$${e}^{\mathrm{2}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{{n}} }{{n}!} \\ $$$${So}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{u}_{{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{{n}} }{{n}!}−\mathrm{1}−\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}−\mathrm{1}\right) \\ $$$$={e}^{\mathrm{2}} −{e} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 20/Oct/18
$${correct}\:{answer}\:{thanks}… \\ $$