Menu Close

let-u-n-k-1-n-1-k-n-k-calculate-n-1-u-n-




Question Number 45957 by maxmathsup by imad last updated on 19/Oct/18
let u_n =Σ_(k=1) ^n  (1/(k!(n−k)!))  calculate Σ_(n=1) ^∞ u_n
letun=k=1n1k!(nk)!calculaten=1un
Commented by maxmathsup by imad last updated on 20/Oct/18
we have u_n =(1/(n!)) Σ_(k=1) ^n    ((n!)/(k!(n−k)!)) =(1/(n!)) Σ_(k=1) ^n  C_n ^k   =(1/(n!)) (Σ_(k=0) ^n  C_n ^k −1) =(1/(n!)){ 2^n −1} =(2^n /(n!)) −(1/(n!)) ⇒  Σ_(n=1) ^∞   u_n = Σ_(n=1) ^∞  (2^n /(n!)) −Σ_(n=1) ^∞  (1/(n!)) = Σ_(n=0) ^∞  (2^n /(n!)) −1 −Σ_(n=0) ^∞  (1/(n!)) +1  =e^2  −e .
wehaveun=1n!k=1nn!k!(nk)!=1n!k=1nCnk=1n!(k=0nCnk1)=1n!{2n1}=2nn!1n!n=1un=n=12nn!n=11n!=n=02nn!1n=01n!+1=e2e.
Answered by Smail last updated on 19/Oct/18
u_n =Σ_(k=1) ^n (1/(k!(n−k)!))=Σ_(k=1) ^n ((n!)/(k!(n−k)!))×(1/(n!))  =(1/(n!))Σ_(k=1) ^n ((n!)/(k!(n−k)!))=(1/(n!))(Σ_(k=0) ^n ((n!)/(k!(n−k)!))−1)  let′s take p(x)=(1+x)^n =Σ_(k=0) ^n ((n!)/(k!(n−k)!))x^k   So p(1)=2^n =Σ_(k=0) ^n ((n!)/(k!(n−k)!))  u_n =(1/(n!))(2^n −1)  Σ_(n=1) ^∞ u_n =Σ_(n=1) ^∞ (2^n /(n!))−Σ_(n=1) ^∞ (1/(n!))  e^x =Σ_(n=0) ^∞ (x^n /(n!))  e^1 =Σ_(n=0) ^∞ (1/(n!))  e^2 =Σ_(n=0) ^∞ (2^n /(n!))  So Σ_(n=1) ^∞ u_n =Σ_(n=0) ^∞ (2^n /(n!))−1−(Σ_(n=0) ^∞ (1/(n!))−1)  =e^2 −e
un=nk=11k!(nk)!=nk=1n!k!(nk)!×1n!=1n!nk=1n!k!(nk)!=1n!(nk=0n!k!(nk)!1)letstakep(x)=(1+x)n=nk=0n!k!(nk)!xkSop(1)=2n=nk=0n!k!(nk)!un=1n!(2n1)n=1un=n=12nn!n=11n!ex=n=0xnn!e1=n=01n!e2=n=02nn!Son=1un=n=02nn!1(n=01n!1)=e2e
Commented by maxmathsup by imad last updated on 20/Oct/18
correct answer thanks...
correctanswerthanks

Leave a Reply

Your email address will not be published. Required fields are marked *