Menu Close

let-u-n-k-1-n-1-n-k-n-k-1-find-a-equivalent-of-u-n-n-




Question Number 40898 by abdo.msup.com last updated on 28/Jul/18
let u_n =Σ_(k=1) ^(n−1)   ((n−k)/(n−k+1))  find a equivalent of u_n (n→+∞)
$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{{n}−{k}}{{n}−{k}+\mathrm{1}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \left({n}\rightarrow+\infty\right) \\ $$
Commented by maxmathsup by imad last updated on 29/Jul/18
thanks i understand....
$${thanks}\:{i}\:{understand}…. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
T_k =1−(1/(n+1−k))  T_1 =1−(1/n)  T_2 =1−(1/(n−1))  ...  ...  T_(n−1) =1−(1/2)  so u_n =(n−1)−{(1/2)+(1/3)+...+(1/n)} to find      u_n =(n−1)−s  value of u_n  n→∞              1>(1/2)>(1/n)               1>(1/3)>(1/n)                1>(1/4)>(1/n)  .....  ......  so   adding  n−1>s>((n−1)/n)      −(n−1)<−s<−(((n−1)/n))  (n−1)−(n−1)<(n−1)−s<(n−1)−(((n−1)/n))  0<u_n <n−1−1+(1/n)  0<u_n <n+(1/n)−2  0<u_n <((√n) −(1/( (√n_  ))))^2   when n→∞      ∞>u_n >0  pls check....
$${T}_{{k}} =\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}−{k}} \\ $$$${T}_{\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{{n}} \\ $$$${T}_{\mathrm{2}} =\mathrm{1}−\frac{\mathrm{1}}{{n}−\mathrm{1}} \\ $$$$… \\ $$$$… \\ $$$${T}_{{n}−\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${so}\:{u}_{{n}} =\left({n}−\mathrm{1}\right)−\left\{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}\right\}\:{to}\:{find} \\ $$$$ \\ $$$$\:\:{u}_{{n}} =\left({n}−\mathrm{1}\right)−{s} \\ $$$${value}\:{of}\:{u}_{{n}} \:{n}\rightarrow\infty \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}>\frac{\mathrm{1}}{\mathrm{2}}>\frac{\mathrm{1}}{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}>\frac{\mathrm{1}}{\mathrm{3}}>\frac{\mathrm{1}}{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}>\frac{\mathrm{1}}{\mathrm{4}}>\frac{\mathrm{1}}{{n}} \\ $$$$….. \\ $$$$…… \\ $$$${so}\:\:\:{adding}\:\:{n}−\mathrm{1}>{s}>\frac{{n}−\mathrm{1}}{{n}} \\ $$$$\:\:\:\:−\left({n}−\mathrm{1}\right)<−{s}<−\left(\frac{{n}−\mathrm{1}}{{n}}\right) \\ $$$$\left({n}−\mathrm{1}\right)−\left({n}−\mathrm{1}\right)<\left({n}−\mathrm{1}\right)−{s}<\left({n}−\mathrm{1}\right)−\left(\frac{{n}−\mathrm{1}}{{n}}\right) \\ $$$$\mathrm{0}<{u}_{{n}} <{n}−\mathrm{1}−\mathrm{1}+\frac{\mathrm{1}}{{n}} \\ $$$$\mathrm{0}<{u}_{{n}} <{n}+\frac{\mathrm{1}}{{n}}−\mathrm{2} \\ $$$$\mathrm{0}<{u}_{{n}} <\left(\sqrt{{n}}\:−\frac{\mathrm{1}}{\:\sqrt{{n}_{\:} }}\right)^{\mathrm{2}} \\ $$$${when}\:{n}\rightarrow\infty\:\:\:\:\:\:\infty>{u}_{{n}} >\mathrm{0} \\ $$$${pls}\:{check}…. \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by math khazana by abdo last updated on 29/Jul/18
we have u_n =Σ_(k=1) ^(n−1)  ((n−k+1−1)/(n−k+1))  =Σ_(k=1) ^(n−1) (1)−Σ_(k=1) ^(n−1)  (1/(n−k+1)) but  Σ_(k=1) ^(n−1) (1)=n−1 and  Σ_(k=1) ^(n−1)  (1/(n−k+1)) =_(n−k=i)    Σ_(i=n−1) ^1 (1/(i+1)) =Σ_(i=1) ^(n−1)  (1/(i+1))  =Σ_(i=2) ^n  (1/i) =H_n −1 ⇒  u_n =n−1−H_n +1 =n−H_n   but  H_n =ln(n)+γ +o((1/n)) ⇒u_n  =n−ln(n)−γ+o((1/n))⇒  u_n ∼n−ln(n)(n→+∞)
$${we}\:{have}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{{n}−{k}+\mathrm{1}−\mathrm{1}}{{n}−{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}\right)−\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{n}−{k}+\mathrm{1}}\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}\right)={n}−\mathrm{1}\:{and} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{n}−{k}+\mathrm{1}}\:=_{{n}−{k}={i}} \:\:\:\sum_{{i}={n}−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{1}}{{i}+\mathrm{1}}\:=\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{i}+\mathrm{1}} \\ $$$$=\sum_{{i}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{i}}\:={H}_{{n}} −\mathrm{1}\:\Rightarrow \\ $$$${u}_{{n}} ={n}−\mathrm{1}−{H}_{{n}} +\mathrm{1}\:={n}−{H}_{{n}} \:\:{but} \\ $$$${H}_{{n}} ={ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{u}_{{n}} \:={n}−{ln}\left({n}\right)−\gamma+{o}\left(\frac{\mathrm{1}}{{n}}\right)\Rightarrow \\ $$$${u}_{{n}} \sim{n}−{ln}\left({n}\right)\left({n}\rightarrow+\infty\right) \\ $$
Commented by math khazana by abdo last updated on 29/Jul/18
H_n =Σ_(k=1) ^n  (1/k)
$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *