Menu Close

let-u-n-k-1-n-1-n-k-n-k-1-find-a-equivalent-of-u-n-n-




Question Number 40898 by abdo.msup.com last updated on 28/Jul/18
let u_n =Σ_(k=1) ^(n−1)   ((n−k)/(n−k+1))  find a equivalent of u_n (n→+∞)
letun=k=1n1nknk+1findaequivalentofun(n+)
Commented by maxmathsup by imad last updated on 29/Jul/18
thanks i understand....
thanksiunderstand.
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
T_k =1−(1/(n+1−k))  T_1 =1−(1/n)  T_2 =1−(1/(n−1))  ...  ...  T_(n−1) =1−(1/2)  so u_n =(n−1)−{(1/2)+(1/3)+...+(1/n)} to find      u_n =(n−1)−s  value of u_n  n→∞              1>(1/2)>(1/n)               1>(1/3)>(1/n)                1>(1/4)>(1/n)  .....  ......  so   adding  n−1>s>((n−1)/n)      −(n−1)<−s<−(((n−1)/n))  (n−1)−(n−1)<(n−1)−s<(n−1)−(((n−1)/n))  0<u_n <n−1−1+(1/n)  0<u_n <n+(1/n)−2  0<u_n <((√n) −(1/( (√n_  ))))^2   when n→∞      ∞>u_n >0  pls check....
Tk=11n+1kT1=11nT2=11n1Tn1=112soun=(n1){12+13++1n}tofindun=(n1)svalueofunn1>12>1n1>13>1n1>14>1n..soaddingn1>s>n1n(n1)<s<(n1n)(n1)(n1)<(n1)s<(n1)(n1n)0<un<n11+1n0<un<n+1n20<un<(n1n)2whenn>un>0plscheck.
Answered by math khazana by abdo last updated on 29/Jul/18
we have u_n =Σ_(k=1) ^(n−1)  ((n−k+1−1)/(n−k+1))  =Σ_(k=1) ^(n−1) (1)−Σ_(k=1) ^(n−1)  (1/(n−k+1)) but  Σ_(k=1) ^(n−1) (1)=n−1 and  Σ_(k=1) ^(n−1)  (1/(n−k+1)) =_(n−k=i)    Σ_(i=n−1) ^1 (1/(i+1)) =Σ_(i=1) ^(n−1)  (1/(i+1))  =Σ_(i=2) ^n  (1/i) =H_n −1 ⇒  u_n =n−1−H_n +1 =n−H_n   but  H_n =ln(n)+γ +o((1/n)) ⇒u_n  =n−ln(n)−γ+o((1/n))⇒  u_n ∼n−ln(n)(n→+∞)
wehaveun=k=1n1nk+11nk+1=k=1n1(1)k=1n11nk+1butk=1n1(1)=n1andk=1n11nk+1=nk=ii=n111i+1=i=1n11i+1=i=2n1i=Hn1un=n1Hn+1=nHnbutHn=ln(n)+γ+o(1n)un=nln(n)γ+o(1n)unnln(n)(n+)
Commented by math khazana by abdo last updated on 29/Jul/18
H_n =Σ_(k=1) ^n  (1/k)
Hn=k=1n1k

Leave a Reply

Your email address will not be published. Required fields are marked *