Menu Close

let-u-n-k-1-n-1-n-k-prove-that-0-u-n-1-




Question Number 32291 by abdo imad last updated on 22/Mar/18
let u_n = Σ_(k=1) ^n  (1/(n+k)) prove that 0≤u_n ≤1 .
$${let}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{n}+{k}}\:{prove}\:{that}\:\mathrm{0}\leqslant{u}_{{n}} \leqslant\mathrm{1}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *