Menu Close

let-u-n-k-1-n-ch-1-k-n-n-prove-that-u-n-is-convergent-and-find-its-limit-




Question Number 32344 by abdo imad last updated on 23/Mar/18
let  u_n = Σ_(k=1) ^n  ch((1/( (√(k+n))))) −n  prove that u_n  is convergent and find its limit.
$${let}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{ch}\left(\frac{\mathrm{1}}{\:\sqrt{{k}+{n}}}\right)\:−{n} \\ $$$${prove}\:{that}\:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{limit}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *