Menu Close

let-u-n-ln-cos-2-n-calculate-n-0-u-n-




Question Number 52678 by maxmathsup by imad last updated on 11/Jan/19
let u_n =ln{cos(2^(−n) )}  calculate Σ_(n=0) ^∞  u_n
letun=ln{cos(2n)}calculaten=0un
Commented by Abdo msup. last updated on 12/Jan/19
let S_n =Σ_(k=0) ^n u_k  ⇒S_n =Σ_(k=0) ^n ln(cos((1/2^k )))  =ln(Π_(k=0) ^n  cos((1/2^k ))) let simplify   W_n =Π_(k=0) ^n  cos((1/2^k )) let K_n =Π_(k=0) ^n sin((1/2^k )) ⇒  W_n .K_n =Π_(k=0) ^n {cos((1/2^k ))sin((1/2^k ))}  =cos(1) sin(1) (1/2^n ) Π_(k=1) ^n sin((2/2^k ))  =(1/2)sin(2) Π_(k=1) ^n  sin((1/2^(k−1) ))  =((sin(2))/2) Π_(k=0) ^(n−1)  sin((1/2^k )) = ((sin(2))/2) (K_n /(sin((1/2^n )))) ⇒  W_n =((sin(2))/2)  (1/(2^n  sin((1/2^n )))) but lim_(n→+∞) (1/(2^n sin((1/2^n ))))  =lim_(n→+∞)      ((1/2^n )/(sin((1/2^n )))) =1  (lim_(x→0)    (x/(sinx)) =1) ⇒  lim_(n→+∞)  W_n  =((sin2)/(2 )) ⇒lim_(n→+∞)  S_n =ln(((sin2)/2)).
letSn=k=0nukSn=k=0nln(cos(12k))=ln(k=0ncos(12k))letsimplifyWn=k=0ncos(12k)letKn=k=0nsin(12k)Wn.Kn=k=0n{cos(12k)sin(12k)}=cos(1)sin(1)12nk=1nsin(22k)=12sin(2)k=1nsin(12k1)=sin(2)2k=0n1sin(12k)=sin(2)2Knsin(12n)Wn=sin(2)212nsin(12n)butlimn+12nsin(12n)=limn+12nsin(12n)=1(limx0xsinx=1)limn+Wn=sin22limn+Sn=ln(sin22).
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jan/19
u_0 +u_1 +u_2 +...+u_n +...∞  =ln{cos((1/2^0 ))}+ln{cos((1/2^1 ))}+ln{cos((1/2^2 ))}+..+ln{cos((1/2^(n−1) ))}+..∞  =ln{cos((1/2^0 ))cos((1/2^1 ))cos((1/2^2 ))..cos((1/2^(n−1) ))...∞}t  now  sin(2)=2sin1cos1                =2^2 sin((1/2))(cos((1/2))cos1                =2^3 sin((1/2^2 ))cos((1/2^2 ))cos((1/2))cos((1/2^0 ))  thus required ans is  ln{((sin2)/(2^n sin((1/2^(n−1) )))}when n→∞  lim_(n→0∞)   ((sin((1/2^(n−1) )))/2^(n−1) )→1  so answer is ln(((sin2)/2))  another approach...  formula  sinθ=θcos((θ/2))cos((θ/2^2 ))cos((θ/2^3 ))...∞  here u_n =ln{cos((1/2^n ))}  u_0 +u_1 +u_2 +...∞  ln{cos((1/2^0 ))}+ln{cos((1/2^1 ))}+ln{cos((1/2^2 ))}+...∞  =ln{cos((1/2^0 ))cos((1/2^1 ))cos((1/2^2 ))...∞}  =ln{cos((1/2^0 ))×((sin1)/1)}   [put θ=1]  =ln{((2sin1cos1)/2)}  =ln(((sin2)/2))  pls check....
u0+u1+u2++un+=ln{cos(120)}+ln{cos(121)}+ln{cos(122)}+..+ln{cos(12n1)}+..=ln{cos(120)cos(121)cos(122)..cos(12n1)}tnowsin(2)=2sin1cos1=22sin(12)(cos(12)cos1=23sin(122)cos(122)cos(12)cos(120)thusrequiredansisln{sin22nsin(12n1}whennlimn0sin(12n1)2n11soanswerisln(sin22)anotherapproachformulasinθ=θcos(θ2)cos(θ22)cos(θ23)hereun=ln{cos(12n)}u0+u1+u2+ln{cos(120)}+ln{cos(121)}+ln{cos(122)}+=ln{cos(120)cos(121)cos(122)}=ln{cos(120)×sin11}[putθ=1]=ln{2sin1cos12}=ln(sin22)plscheck.
Commented by Abdo msup. last updated on 12/Jan/19
thanks sir Tanmay your answer is correct.
thankssirTanmayyouransweriscorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *