Menu Close

let-u-n-n-n-1-1-n-1-find-the-nature-of-n-0-u-n-




Question Number 35057 by math khazana by abdo last updated on 14/May/18
let u_n =((n/(n+1)))^(1/n)   −1  find the nature of Σ_(n≥0) u_n
letun=(nn+1)1n1findthenatureofn0un
Commented by prof Abdo imad last updated on 16/May/18
we have u_n  = (1−(1/(n+1)))^n −1  =e^(nln(1−(1/(n+1))))  −1  but ln^′ (1−u)= ((−1)/(1−u)) =−Σ_(n=0) ^∞ u^n   ⇒ln(1−u) =−Σ_(n=0) ^∞   (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n)  =−(u  +(u^2 /2) +.....)⇒  ln(1−(1/(n+1))) =−(1/(n+1)) −(1/(2(n+1)^2 ))  +o((1/((n+1)^3 )))⇒  nln(1−(1/(n+1))) =((−n)/(n+1))  −(n/((n+1)^2 )) +o( (1/n^2 ))→−1(n→+∞)  ⇒lim_(n→+∞)  u_n =(1/e)  ≠0   so Σ u_n   diverges .
wehaveun=(11n+1)n1=enln(11n+1)1butln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unn=(u+u22+..)ln(11n+1)=1n+112(n+1)2+o(1(n+1)3)nln(11n+1)=nn+1n(n+1)2+o(1n2)1(n+)limn+un=1e0soΣundiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *