Menu Close

let-u-n-pi-n-1-pi-n-tan-x-dx-with-n-3-1-calculate-U-n-interms-of-n-and-calculate-lim-n-U-n-2-find-nature-of-the-serie-n-3-U-n-




Question Number 55571 by maxmathsup by imad last updated on 26/Feb/19
let u_n = ∫_(π/(n+1)) ^(π/n) (√(tan(x)))dx  with n≥3  1) calculate U_n  interms of n   and calculate lim_(n→+∞  )  U_n   2) find nature of the serie Σ_(n≥3)  U_n
letun=πn+1πntan(x)dxwithn31)calculateUnintermsofnandcalculatelimn+Un2)findnatureoftheserien3Un
Commented by maxmathsup by imad last updated on 03/Mar/19
1) we have proved that   ∫(√(tanx))dx =(1/( (√2))){ln((√((tanx−(√(2tanx))+1)/(tanx +(√(2tanx))+1))) +arctan((√(2tanx))+1)+arctan((√(2tanx))−1)} +c  ⇒u_n =(1/( (√2)))[ln(√((tannx−(√(2tanx))+1)/(tanx +(√(2tanx))+1)))) +arctan((√(2tanx))+1)+arctan((√(2tanx))−1)]_(π/(n+1)) ^(π/n)   =(1/( (√2))) A_n −(1/( (√2))) B_n   with  A_n =ln((√((tan((π/n))−(√(2tan((π/n))))+1)/(tan((π/n))+(√(2tan((π/n))))+1))))+arctan((√(2tan((π/n))))+1)  +arctan((√(2tan((π/n))))−1)} and  B_n =ln((√((tan((π/(n+1)))−(√(2tan((π/(n+1)))))+1)/(tan((π/(n+1)))+(√(2tan((π/(n+1)))))+1))))+arctan((√(2tan((π/(n+1)))))+1)  +arctan((√(2tan((π/(n+1)))))−1}  we have lim_(n→+∞)  A_n =ln((1/1))+arctan(1)+arctan(−1) =0  lim_(n→+∞) B_n =ln((1/1))+arctan(1)+arctan(−1)=0 ⇒lim_(n→+∞) u_n =0
1)wehaveprovedthattanxdx=12{ln(tanx2tanx+1tanx+2tanx+1+arctan(2tanx+1)+arctan(2tanx1)}+cun=12[lntannx2tanx+1tanx+2tanx+1)+arctan(2tanx+1)+arctan(2tanx1)]πn+1πn=12An12BnwithAn=ln(tan(πn)2tan(πn)+1tan(πn)+2tan(πn)+1)+arctan(2tan(πn)+1)+arctan(2tan(πn)1)}andBn=ln(tan(πn+1)2tan(πn+1)+1tan(πn+1)+2tan(πn+1)+1)+arctan(2tan(πn+1)+1)+arctan(2tan(πn+1)1}wehavelimn+An=ln(11)+arctan(1)+arctan(1)=0limn+Bn=ln(11)+arctan(1)+arctan(1)=0limn+un=0

Leave a Reply

Your email address will not be published. Required fields are marked *