Menu Close

let-u-n-x-1-n-x-n-n-1-dt-t-x-with-x-1-2-1-prove-that-0-u-n-x-1-n-x-1-n-1-x-n-gt-0-2-prove-that-u-n-x-converges-let-n-1-u-n-1-3-find-n-1-u-n-x-i




Question Number 62420 by mathsolverby Abdo last updated on 20/Jun/19
let u_n (x)=(1/n^x ) −∫_n ^(n+1) (dt/t^x )  with x∈[1,2]  1)prove that 0≤ u_n (x)≤(1/n^x )−(1/((n+1)^x )) (n>0)  2)prove that Σ u_n (x)converges  let γ =Σ_(n=1) ^∞  u_n (1)  3)find Σ_(n=1) ^∞ u_n (x) interms of ξ(x)and  1−x  4) prove that the converg.of Σu_n (x)is  uniform  prove that for x∈V(1)  ξ(x) =(1/(x−1)) +γ +o(1)  5) find the value of  Σ_(n=1) ^∞  (((−1)^(n−1) )/n)ln(n)
letun(x)=1nxnn+1dttxwithx[1,2]1)provethat0un(x)1nx1(n+1)x(n>0)2)provethatΣun(x)convergesletγ=n=1un(1)3)findn=1un(x)intermsofξ(x)and1x4)provethattheconverg.ofΣun(x)isuniformprovethatforxV(1)ξ(x)=1x1+γ+o(1)5)findthevalueofn=1(1)n1nln(n)

Leave a Reply

Your email address will not be published. Required fields are marked *