Menu Close

let-U-n-z-C-z-n-1-simplify-p-0-2n-1-w-p-with-w-U-n-and-p-0-2n-1-2w-1-p-




Question Number 148501 by mathmax by abdo last updated on 28/Jul/21
let U_n ={z∈C /z^n  =1}  simplify  Σ_(p=0) ^(2n−1)  w^p         with w∈U_n      and  Σ_(p=0) ^(2n−1) (2w +1)^p
letUn={zC/zn=1}simplifyp=02n1wpwithwUnandp=02n1(2w+1)p
Answered by Olaf_Thorendsen last updated on 28/Jul/21
• w = 1  S_n (1) = Σ_(p=0) ^(2n−1) 1^p  = 2n  (trivial)    • w^n  = 1 and w ≠ 1  S_n (w) = Σ_(p=0) ^(2n−1) w^p  =((1−w^(2n) )/(1−w))  = ((1−1)/(1−w))  = 0    T_n (w) = Σ_(p=0) ^(2n−1) (2w+1)^p   T_n (w) =((1−(2w+1)^(2n) )/(1−(2w+1)))  = (((2w+1)^(2n) −1)/(2w))
w=1Sn(1)=2n1p=01p=2n(trivial)wn=1andw1Sn(w)=2n1p=0wp=1w2n1w=111w=0Tn(w)=2n1p=0(2w+1)pTn(w)=1(2w+1)2n1(2w+1)=(2w+1)2n12w
Answered by mathmax by abdo last updated on 28/Jul/21
if w=1   A_n =Σ_(p=0) ^(2n−1)  w^p  =2n  if w≠1   Σ_(p=0) ^(2n−1)  w^p  =((1−w^(2n) )/(1−w))=((1−(w^n )^2 )/(1−w))=((1−1)/(1−w))=0  alsoB_n = Σ_(p=0) ^(2n−1)  (2w+1)^p   the roots of z^n  =1 are z_k =e^(i((2kπ)/n))   and 0≤k≤n−1 ⇒w≠−(1/2) ⇒B_n =((1−(2w+1)^(2n) )/(1−(2w+1)))  =(1/(2w)){(2w+1)^(2n) −1}  =(1/(2w)){Σ_(k=0) ^(2n) C_(2n) ^k  (2w)^k −1}  =(1/(2w))Σ_(k=0) ^(2n)  C_(2n) ^k  2^k  w^k
ifw=1An=p=02n1wp=2nifw1p=02n1wp=1w2n1w=1(wn)21w=111w=0alsoBn=p=02n1(2w+1)ptherootsofzn=1arezk=ei2kπnand0kn1w12Bn=1(2w+1)2n1(2w+1)=12w{(2w+1)2n1}=12w{k=02nC2nk(2w)k1}=12wk=02nC2nk2kwk

Leave a Reply

Your email address will not be published. Required fields are marked *