Menu Close

let-U-x-y-R-2-1-x-2-2y-2-3-calculate-U-x-y-x-2-y-2-dxdxy-




Question Number 51998 by maxmathsup by imad last updated on 01/Jan/19
let U ={(x,y)∈R^2 / 1≤x^2  +2y^2 ≤3}  calculate ∫∫_U     ((x−y)/(x^2  +y^2 ))dxdxy
letU={(x,y)R2/1x2+2y23}calculateUxyx2+y2dxdxy
Commented by Abdo msup. last updated on 05/Jan/19
let consider the diffeomorphism  (r,θ)→ϕ(r,θ)=(x,y) with x=rcosθ and y =(r/( (√2)))sinθ  1≤x^2  +2y^2 ≤3 ⇒1 ≤r^2 ≤3 ⇒1≤r≤(√3) and   0≤θ≤2π ⇒  ∫∫_U ((x−y)/(x^2  +y^2 ))dxdy =∫∫_(1≤r≤(√3)and 0≤θ≤2π) ((r(cosθ−((sinθ)/( (√2)))))/(r^2 cos^2 θ +(r^2 /2)sin^2 θ))rdrdθ  ∫_1 ^(√3) dr ∫_0 ^(2π)    (((√2)cosθ −sinθ)/(2cos^2 θ +sin^2 θ))2dθ  =2((√3)−1) ∫_0 ^(2π)    (((√2)cosθ −sinθ)/(1+cos^2 θ)) dθ but  ∫_0 ^(2π)   (((√2)cosθ −sinθ)/(1+cos^2 θ)) dθ  =(√2)∫_0 ^(2π)  ((cosθ)/(1+cos^2 θ))dθ  +∫_0 ^(2π)  ((−sinθ)/(1+cos^2 θ)) dθ  ∫_0 ^(2π)   ((−sinθ)/(1+cos^2 θ)) dθ =[arctan(cosθ)]_0 ^(2π)   =0  also  ∫_0 ^(2π)    ((cosθ)/(1+cos^2 θ)) dθ =∫_0 ^π   ((cosθ)/(1+cos^2 θ)) +∫_π ^(2π)  ((cosθ)/(1+cos^2 θ))dθ  ∫_π ^(2π)   ((cosθ)/(1+cos^2 θ)) dθ =_(θ =π +t)   ∫_0 ^π  ((−cost)/(1+cos^2 t)) dt ⇒  ∫_0 ^(2π)   ((cosθ)/(1+cos^2 θ)) dθ =0 ⇒  ∫∫_U  ((x−y)/(x^2  +y^2 )) dxdy =0
letconsiderthediffeomorphism(r,θ)φ(r,θ)=(x,y)withx=rcosθandy=r2sinθ1x2+2y231r231r3and0θ2πUxyx2+y2dxdy=1r3and0θ2πr(cosθsinθ2)r2cos2θ+r22sin2θrdrdθ13dr02π2cosθsinθ2cos2θ+sin2θ2dθ=2(31)02π2cosθsinθ1+cos2θdθbut02π2cosθsinθ1+cos2θdθ=202πcosθ1+cos2θdθ+02πsinθ1+cos2θdθ02πsinθ1+cos2θdθ=[arctan(cosθ)]02π=0also02πcosθ1+cos2θdθ=0πcosθ1+cos2θ+π2πcosθ1+cos2θdθπ2πcosθ1+cos2θdθ=θ=π+t0πcost1+cos2tdt02πcosθ1+cos2θdθ=0Uxyx2+y2dxdy=0

Leave a Reply

Your email address will not be published. Required fields are marked *