Menu Close

Let-us-call-complex-triangle-which-has-either-sides-or-angles-are-complex-numbers-Let-a-b-c-R-which-are-sides-of-a-complex-triangle-which-need-not-satisfy-triangle-inequality-say-a-1-b-2-and-c-4-P




Question Number 15759 by prakash jain last updated on 13/Jun/17
Let us call complex triangle which  has either sides or angles are  complex numbers.  Let a,b,c ∈R which are sides of  a complex triangle which need  not satisfy triangle inequality.  say a=1,b=2 and c=4.  Prove (or counter example)  (a/(sin A))=(b/(sin B))=(c/(sin C))  Is A+B+C=π?  Assume only principle solution  for A,B and C.  For such a triangle A,B and C  will take complex values.
Letuscallcomplextrianglewhichhaseithersidesoranglesarecomplexnumbers.Leta,b,cRwhicharesidesofacomplextrianglewhichneednotsatisfytriangleinequality.saya=1,b=2andc=4.Prove(orcounterexample)asinA=bsinB=csinCIsA+B+C=π?AssumeonlyprinciplesolutionforA,BandC.ForsuchatriangleA,BandCwilltakecomplexvalues.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Jun/17
a^2 =b^2 +c^2 −2bccosA⇒  cosA=((4+16−1)/(2×2×4))=((19)/(16))>1  ⇒((e^(iA) +e^(−iA) )/2)=((19)/(16))    ⇒^(e^(iA) =t) 16(t+(1/t))=38  ⇒16t^2 −38t+16=0⇒t=((38±(√(38^2 −4×256)))/(32))=1.83,.55   { ((e^(iA) =1.82⇒iA=ln1.82⇒A=−0.6i)),((e^(iA) =.55⇒iA=ln.55⇒A=+0.6i)) :}  cosB=((a^2 +c^2 −b^2 )/(2ac))=((1+16−4)/(2×1×4))=((13)/8)  ((e^(iB) +e^(−iB) )/2)=((13)/8)   ⇒^(e^(iB) =s)  8(s+(1/s))=13  ⇒8s^2 −13s+8=0⇒s=((13±(√(169−4×64)))/(16))  ⇒s=.81±.58i=(√(.81^2 +.58^2 ))(((.81±.58i)/( (√(.81^2 +.58^2 )))))=  =.99(.81±.58i)# { (e^(icos^(−1) (.81)) ),(e^(−icos^(−1) (.81)) ) :}  ⇒B= { ((cos^(−1) (.81)=35.90^• )),((−cos^(−1) (.81)=−35.90^• )) :}  cosC=((a^2 +b^2 −c^2 )/(2ab))=((1+4−16)/(2×1×2))=−((11)/4)  ⇒((e^(iC) +e^(−iC) )/2)=−((11)/4)  ⇒^(e^(iC) =p) ⇒4(p+(1/p))=−11  ⇒4p^2 +11p+4=0⇒p=((−11±(√(121−64)))/8)=  ⇒p=−.86,−4.6  ⇒e^(iC) =−.86=.86i^2 ⇒iC=ln.86+2lni=  =−.15+iπ⇒C=+.15i+π  e^(iC) =−4.6=4.6i^2 ⇒iC=ln4.6+2lni=  =1.52+iπ⇒C=−1.52i+π  ⇒C= { ((.15i+𝛑)),((−1.52i+𝛑)) :}  (i=0+1×i=cos90+isin90=e^(i(π/2)) ⇒lni=i(π/2))  ⇒A= { ((−.6i)),((+.6i)) :},B= { ((35.90^• )),((−35.90^• )) :},C= { ((.15i+180)),((−1.52+180)) :}  ⇒A+B+C=  =−.6i+35.90+.15i+180=−.45i+215.90  =.6i−35.90−1.52i+180=−.88i+144.1  =−.6i+35.90−1.52i+180=−2.12i+215.90  =−.6i−35.90+.15i+180=−.45i+144.1  =−.6i−35.90−1.52+180=−2.12i+144.1  =................  there is no case for:A+B+C=180.
a2=b2+c22bccosAcosA=4+1612×2×4=1916>1eiA+eiA2=1916eiA=t16(t+1t)=3816t238t+16=0t=38±3824×25632=1.83,.55{eiA=1.82iA=ln1.82A=0.6ieiA=.55iA=ln.55A=+0.6icosB=a2+c2b22ac=1+1642×1×4=138eiB+eiB2=138eiB=s8(s+1s)=138s213s+8=0s=13±1694×6416s=.81±.58i=.812+.582(.81±.58i.812+.582)=You can't use 'macro parameter character #' in math modeB={cos1(.81)=35.90cos1(.81)=35.90cosC=a2+b2c22ab=1+4162×1×2=114eiC+eiC2=114eiC=p4(p+1p)=114p2+11p+4=0p=11±121648=p=.86,4.6eiC=.86=.86i2iC=ln.86+2lni==.15+iπC=+.15i+πeiC=4.6=4.6i2iC=ln4.6+2lni==1.52+iπC=1.52i+πC={.15i+π1.52i+π(i=0+1×i=cos90+isin90=eiπ2lni=iπ2)A={.6i+.6i,B={35.9035.90,C={.15i+1801.52+180A+B+C==.6i+35.90+.15i+180=.45i+215.90=.6i35.901.52i+180=.88i+144.1=.6i+35.901.52i+180=2.12i+215.90=.6i35.90+.15i+180=.45i+144.1=.6i35.901.52+180=2.12i+144.1=.thereisnocasefor:A+B+C=180.
Commented by prakash jain last updated on 14/Jun/17
cos^(−1) (−((11)/4))+cos^(−1) (((19)/(16)))+cos^(−1) (((13)/8))=π  I think you mixed degrees and radians  somewhere.  I think theory of triangle remains  valid even with complex sides  and angles.
cos1(114)+cos1(1916)+cos1(138)=πIthinkyoumixeddegreesandradianssomewhere.Ithinktheoryoftriangleremainsvalidevenwithcomplexsidesandangles.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 15/Jun/17
mr prakash! cos^(−1) (((19)/(16))),not a valid   angle with primary elements of   geometry and trigonometry.
mrprakash!cos1(1916),notavalidanglewithprimaryelementsofgeometryandtrigonometry.
Commented by prakash jain last updated on 18/Jun/17
Yes. I started this question by  calling these triangle complex  triangles.
Yes.Istartedthisquestionbycallingthesetrianglecomplextriangles.

Leave a Reply

Your email address will not be published. Required fields are marked *