Menu Close

let-V-n-0-cos-nx-n-x-2-dx-with-n-integr-nstural-not-0-1-calculate-V-n-2-calculate-lim-n-nV-n-3-calculate-the-sum-n-0-V-n-




Question Number 54830 by maxmathsup by imad last updated on 12/Feb/19
let V_n = ∫_0 ^∞   ((cos(nx))/(n +x^2 ))dx   with n integr nstural not 0 .  1) calculate V_n   2)calculate lim_(n→+∞) nV_n   3) calculate the sum Σ_(n=0) ^∞  V_n
letVn=0cos(nx)n+x2dxwithnintegrnsturalnot0.1)calculateVn2)calculatelimn+nVn3)calculatethesumn=0Vn
Commented by maxmathsup by imad last updated on 13/Feb/19
1) we have V_n =_(x=(√n)t)      ∫_0 ^∞   ((cos(n(√n)t))/(n(1+t^2 ))) (√n)dt =(1/( (√n))) ∫_0 ^∞   ((cos(n(√n)t))/(1+t^2 ))dt ⇒  2(√n)V_n =∫_(−∞) ^(+∞)   ((cos(n(√n)t))/(t^2  +1))dt =Re ( ∫_(−∞) ^(+∞)   (e^(in(√n)t) /(t^2  +1))dt)  let ϕ(z)=(e^(in(√n)z) /(z^2  +1))  the poles of ϕ are i and −i  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) but ϕ(z) =(e^(in(√n)z) /((z−i)(z+i)))  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z) = (e^(−n(√n)) /(2i)) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−n(√n)) /(2i))  =π e^(−n(√n))    ⇒2(√n)V_n =π e^(−n(√n))  ⇒ V_n =(π/(2(√n))) e^(−n(√n))   2) lim_(n→+∞) n V_n =lim_(n→+∞)   (π/2) (√n) e^(−n(√n))   =0
1)wehaveVn=x=nt0cos(nnt)n(1+t2)ndt=1n0cos(nnt)1+t2dt2nVn=+cos(nnt)t2+1dt=Re(+einntt2+1dt)letφ(z)=einnzz2+1thepolesofφareiandiresidustheoremgive+φ(z)dz=2iπRes(φ,i)butφ(z)=einnz(zi)(z+i)Res(φ,i)=limzi(zi)φ(z)=enn2i+φ(z)dz=2iπenn2i=πenn2nVn=πennVn=π2nenn2)limn+nVn=limn+π2nenn=0

Leave a Reply

Your email address will not be published. Required fields are marked *