Question Number 54955 by gunawan last updated on 15/Feb/19
$$\mathrm{Let}\:\mathrm{vector}\:\mathrm{set}\:\left\{{u}_{\mathrm{1}} ,\:{u}_{\mathrm{2}} ,\:{u}_{\mathrm{3}} ,\:{u}_{\mathrm{4}} \right\}\:\mathrm{in}\:\mathbb{C}^{{n}} \\ $$$$\mathrm{free}\:\mathrm{linear}.\:\mathrm{So}\:\mathrm{that}\: \\ $$$$\left\{{u}_{\mathrm{1}} +\alpha{u}_{\mathrm{2}} ,\:{u}_{\mathrm{2}} +\alpha{u}_{\mathrm{3}} ,\:{u}_{\mathrm{3}} +\alpha{u}_{\mathrm{4}} ,\:{u}_{\mathrm{4}} +\alpha{u}_{\mathrm{1}} \right\} \\ $$$$\mathrm{too}\:\mathrm{free}\:\mathrm{linear}\:,\:\mathrm{scalar}\:\alpha\:\mathrm{have}\:\mathrm{to}… \\ $$
Answered by kaivan.ahmadi last updated on 15/Feb/19
$${c}_{\mathrm{1}} \left({u}_{\mathrm{1}} +\alpha{u}_{\mathrm{2}} \right)+{c}_{\mathrm{2}} \left({u}_{\mathrm{2}} +\alpha{u}_{\mathrm{3}} \right)+{c}_{\mathrm{3}} \left({u}_{\mathrm{3}} +\alpha{u}_{\mathrm{4}} \right)+{c}_{\mathrm{4}} \left({u}_{\mathrm{4}} +\alpha{u}_{\mathrm{1}} \right)=\mathrm{0}\Rightarrow \\ $$$$\left({c}_{\mathrm{1}} +{c}_{\mathrm{4}} \alpha\right){u}_{\mathrm{1}} +\left({c}_{\mathrm{1}} \alpha+{c}_{\mathrm{2}} \right){u}_{\mathrm{2}} +\left({c}_{\mathrm{2}} \alpha+{c}_{\mathrm{3}} \right){u}_{\mathrm{3}} +\left({c}_{\mathrm{3}} \alpha+{c}_{\mathrm{4}} \right){u}_{\mathrm{4}} =\mathrm{0}\Rightarrow{since}\:{u}_{{i}} \:{are}\:{free}\:{linear} \\ $$$$\begin{cases}{{c}_{\mathrm{1}} +{c}_{\mathrm{4}} \alpha=\mathrm{0}\:\:\:\:\:\Rightarrow{c}_{\mathrm{1}} =−{c}_{\mathrm{4}} \alpha}\\{{c}_{\mathrm{1}} \alpha+{c}_{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\Rightarrow{c}_{\mathrm{4}} \alpha^{\mathrm{2}} ={c}_{\mathrm{2}} }\\{{c}_{\mathrm{2}} \alpha+{c}_{\mathrm{3}} =\mathrm{0}\:\:\:\:\:\Rightarrow−{c}_{\mathrm{4}} \alpha^{\mathrm{3}} ={c}_{\mathrm{3}} }\\{{c}_{\mathrm{3}} \alpha+{c}_{\mathrm{4}} =\mathrm{0}\:\:\:\:\Rightarrow−{c}_{\mathrm{4}} \alpha^{\mathrm{4}} +{c}_{\mathrm{4}} =\mathrm{0}\Rightarrow\left(\mathrm{1}−\alpha^{\mathrm{4}} \right){c}_{\mathrm{4}} =\mathrm{0}\Rightarrow{c}_{\mathrm{4}} =\mathrm{0}}\end{cases} \\ $$$$\Rightarrow{c}_{\mathrm{3}} ={c}_{\mathrm{2}} ={c}_{\mathrm{1}} =\mathrm{0} \\ $$$${we}\:{should}\:{have}\:\mathrm{1}−\alpha^{\mathrm{4}} \neq\mathrm{0}\Rightarrow\alpha^{\mathrm{4}} \neq\mathrm{1} \\ $$
Commented by gunawan last updated on 15/Feb/19
$$\mathrm{nice} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$