Menu Close

Let-W-be-the-subspace-of-R-4-generated-by-vector-1-2-5-3-2-3-1-4-3-8-3-5-find-the-basis-and-dimension-of-W-




Question Number 56899 by Tawa1 last updated on 26/Mar/19
Let  W  be the subspace of  R^4   generated by vector   (1, − 2, 5, − 3),    (2, 3, 1, − 4),   (3, 8, − 3, − 5)  find the  basis and dimension of  W.
LetWbethesubspaceofR4generatedbyvector(1,2,5,3),(2,3,1,4),(3,8,3,5)findthebasisanddimensionofW.
Answered by kaivan.ahmadi last updated on 26/Mar/19
 determinant (((1       −2         5      −3)),((2           3          1     −4  )),((3           8     −3       −5)))→_(−3R_1 +R_3 ) ^(−2R_1 +R_2 )  determinant (((1      −2         5         −3)),((0         7        −9            2)),((0       14      −18          4)))  →^(R_2 /7)  determinant (((1     −2        5          −3)),((0        1         ((−9)/7)        (2/7))),((0        14       −18       4)))→_(−14R_2 +R_3 ) ^(2R_2 +R_1 )    determinant (((1          0          ((17)/7)        ((−17)/7))),((0          1          ((−9)/7)         (2/7))),((0          0           0              0)))⇒  dim(W)=2=number of nonzero rows  and the set of nonzero rows as vector is a basis for W
|125323143835|2R1+R23R1+R3|12530792014184|R27|1253019727014184|2R2+R114R2+R3|101771770197270000|dim(W)=2=numberofnonzerorowsandthesetofnonzerorowsasvectorisabasisforW
Commented by Tawa1 last updated on 29/Mar/19
God bless you sir. I appreciate
Godblessyousir.Iappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *