Menu Close

let-w-from-C-and-w-n-1-find-the-value-of-S-k-0-n-1-C-n-k-w-k-




Question Number 49244 by maxmathsup by imad last updated on 04/Dec/18
let w from C and w^n  =1 find the value of   S =Σ_(k=0) ^(n−1)  C_n ^k  w^k  .
letwfromCandwn=1findthevalueofS=k=0n1Cnkwk.
Answered by Smail last updated on 05/Dec/18
S=(1+w)^(n−1)   w=e^((2ikπ)/n)   S=(1+e^(iθ) )^(n−1)   with θ=((2kπ)/n)  S=(1+cosθ+isinθ)^(n−1)   =(2cos^2 ((θ/2))+2isin((θ/2))cos((θ/2)))^(n−1)   =(2cos((θ/2)))^(n−1) (cos((θ/2))+isin((θ/2)))^(n−1)   =2^(n−1) cos^(n−1) ((θ/2))×e^(i(θ/2)(n−1))   =2^(n−1) cos^(n−1) (((kπ)/n))×e^(i(((n−1)/n))kπ)   =2^(n−1) cos^(n−1) (((kπ)/n))e^(i(1−(1/n))kπ)   =2^(n−1) cos^(n−1) (((kπ)/n))(−1)^k (cos(((kπ)/n))−isin(((kπ)/n)))  S=2^(n−1) (−1)^k cos^n (((kπ)/n))(1−icot(((kπ)/n)))
S=(1+w)n1w=e2ikπnS=(1+eiθ)n1withθ=2kπnS=(1+cosθ+isinθ)n1=(2cos2(θ2)+2isin(θ2)cos(θ2))n1=(2cos(θ2))n1(cos(θ2)+isin(θ2))n1=2n1cosn1(θ2)×eiθ2(n1)=2n1cosn1(kπn)×ei(n1n)kπ=2n1cosn1(kπn)ei(11n)kπ=2n1cosn1(kπn)(1)k(cos(kπn)isin(kπn))S=2n1(1)kcosn(kπn)(1icot(kπn))

Leave a Reply

Your email address will not be published. Required fields are marked *