Question Number 29510 by abdo imad last updated on 09/Feb/18
$${let}\:\:\:{w}_{{n}} =\:\frac{\mathrm{1}}{{n}}\left(\:\mathrm{1}\:+{e}^{\frac{\mathrm{1}}{{n}}} \:+{e}^{\frac{\mathrm{2}}{{n}}} \:+\:…\:{e}^{\frac{{n}−\mathrm{1}}{{n}}} \right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {w}_{{n}} . \\ $$
Commented by abdo imad last updated on 11/Feb/18
$${we}\:{have}\:{w}_{{n}} =\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{e}^{\frac{{k}}{{n}}} \:\Rightarrow\:{lim}_{{n}\rightarrow\infty} {w}_{{n}} \\ $$$$={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}−\mathrm{0}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{e}^{\frac{{k}\left(\mathrm{1}−{o}\right)}{{n}}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{{x}} {dx}\:\:\:\:\:\left({Reiman}\:{sum}\right) \\ $$$$=\:\left[{e}^{{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:\:={e}−\mathrm{1}\:. \\ $$