Menu Close

Let-W-the-lambert-function-defined-as-W-xe-x-x-x-0-Prove-that-0-1-W-ulnu-u-du-2-2-




Question Number 80863 by ~blr237~ last updated on 07/Feb/20
 Let W the lambert function defined as W(xe^x )=x   x≥0  Prove that   ∫_0 ^1 (( W(−ulnu))/u)du=((ζ(2))/2)
LetWthelambertfunctiondefinedasW(xex)=xx0Provethat01W(ulnu)udu=ζ(2)2
Answered by Kamel Kamel last updated on 08/Feb/20
w(x)=−Σ_(n=1) ^(+∞) (((−1)^n n^(n−1) )/(n!))x^n   ∴ Ω=∫_0 ^1 w(−uLn(u))(du/u)=−Σ_(n=1) ^(+∞) (n^(n−1) /(n!))∫_0 ^1 u^(n−1) Ln^n (u)du          =^(u=e^(−t) )    −Σ_(n=1) ^(+∞) (((−1)^n n^(n−1) )/(n!))∫_0 ^(+∞) t^n e^(−nt) dt            =   −Σ_(n=1) ^(+∞) (((−1)^n )/(n^2 n!))∫_0 ^(+∞) z^n e^(−z) dz=−Σ_(n=1) ^(+∞) (((−1)^n )/n^2 )           =−((1/4)ζ(2)−(ζ(2)−(1/4)ζ(2))=((ζ(2))/2)=(π^2 /(12))
w(x)=+n=1(1)nnn1n!xnΩ=01w(uLn(u))duu=+n=1nn1n!01un1Lnn(u)du=u=et+n=1(1)nnn1n!0+tnentdt=+n=1(1)nn2n!0+znezdz=+n=1(1)nn2=(14ζ(2)(ζ(2)14ζ(2))=ζ(2)2=π212

Leave a Reply

Your email address will not be published. Required fields are marked *