Menu Close

let-x-0-1-prove-that-the-equation-tan-pix-2-pi-2nx-have-only-one-solution-x-n-2-study-tbe-sequence-x-n-and-find-a-equivalent-of-x-n-




Question Number 50394 by Abdo msup. last updated on 16/Dec/18
let  x∈]0,1[  prove that the equation  tan(((πx)/2))=(π/(2nx)) have only one solution x_n   2) study tbe sequence (x_n ) and find a equivalent of x_n
$$\left.{let}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\:{prove}\:{that}\:{the}\:{equation}\right. \\ $$$${tan}\left(\frac{\pi{x}}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}{nx}}\:{have}\:{only}\:{one}\:{solution}\:{x}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{tbe}\:{sequence}\:\left({x}_{{n}} \right)\:{and}\:{find}\:{a}\:{equivalent}\:{of}\:{x}_{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *