Menu Close

let-x-0-t-x-1-e-t-dt-with-x-gt-1-calculate-n-x-for-all-integr-n-




Question Number 62416 by mathmax by abdo last updated on 20/Jun/19
let Γ(x)=∫_0 ^∞  t^(x−1) e^(−t)  dt   with x>1 calculate Γ^((n)) (x) for all integr n.
letΓ(x)=0tx1etdtwithx>1calculateΓ(n)(x)forallintegrn.
Commented by mathmax by abdo last updated on 23/Jun/19
the function Γ is C^∞   on ]0,+∞[  we have Γ(x) =∫_0 ^∞  e^((x−1)ln(t))  e^(−t)  dt ⇒  Γ^((1)) (x) =∫_0 ^∞    ln(t) t^(x−1)  e^(−t)   dt    and by recurence we get  Γ^((n)) (x) =∫_0 ^∞  (ln(t))^n  t^(x−1)  e^(−t)   dt   ∀ n ≥1 .
thefunctionΓisCon]0,+[wehaveΓ(x)=0e(x1)ln(t)etdtΓ(1)(x)=0ln(t)tx1etdtandbyrecurencewegetΓ(n)(x)=0(ln(t))ntx1etdtn1.

Leave a Reply

Your email address will not be published. Required fields are marked *