Menu Close

Let-x-1-0-x-2-1-and-x-n-1-2-x-n-1-x-n-2-Show-that-x-n-2-n-1-1-n-3-2-n-2-




Question Number 34186 by Joel578 last updated on 02/May/18
Let x_1  = 0, x_2  = 1 and x_n  = (1/2)(x_(n−1)  + x_(n−2) )  Show that   x_n  = ((2^(n−1)  + (−1)^n )/(3 . 2^(n−2) ))
Letx1=0,x2=1andxn=12(xn1+xn2)Showthatxn=2n1+(1)n3.2n2
Commented by abdo mathsup 649 cc last updated on 02/May/18
⇔ 2x_n = x_(n−1)  +x_(n−2)  ⇔ 2x_(n+2) = x_(n+1)  +x_n   ⇔ 2x_(n+2)  −x_(n+1)  −x_n =0 the csrscteristic equation  is  2x^2  −x−1 =0  Δ = 1 −4(2)(−1) = 9 >0  x_1 =((1+3)/4) =1  ,  x_2 =((1−3)/4) =−(1/2) the roots are simples  ⇒ x_n = α 1^n  +β (−(1/2))^n  =α  +β(−(1/2))^n   x_1 =0 ⇒ α −(β/2)=0 ⇒β=2α  x_2 = 1 ⇒ α +(β/4) =1 ⇒4α  +β =4 ⇒4α +2α =4 ⇒  6α=4⇒ α =(2/3)  and  β =(4/3) ⇒  x_n = (2/3) +(4/3)(−(1/2))^n  = (2/3) + ((4(−1)^n )/(3 .2^n ))  =(1/3)(  ((2^(n+1)   +4 .(−1)^n )/2^n ))=(4/3)( ((2^(n−1)  +(−1)^n )/2^n ))  = ((2^(n−1)  +(−1)^n )/(3.2^(n−2) )) .
2xn=xn1+xn22xn+2=xn+1+xn2xn+2xn+1xn=0thecsrscteristicequationis2x2x1=0Δ=14(2)(1)=9>0x1=1+34=1,x2=134=12therootsaresimplesxn=α1n+β(12)n=α+β(12)nx1=0αβ2=0β=2αx2=1α+β4=14α+β=44α+2α=46α=4α=23andβ=43xn=23+43(12)n=23+4(1)n3.2n=13(2n+1+4.(1)n2n)=43(2n1+(1)n2n)=2n1+(1)n3.2n2.
Answered by candre last updated on 02/May/18
x_1 =((2^(1−1) +(−1)^1 )/(3∙2^(1−2) ))=((1−1)/(3/2))=0  x_2 =((2^(2−1) +(−1)^2 )/(3∙2^(2−2) ))=((2+1)/3)=1  x_(n−1) =((2^(n−2) +(−1)^(n−1) )/(3∙2^(n−3) ))  x_(n−2) =((2^(n−3) +(−1)^(n−2) )/(3∙2^(n−4) ))  ((x_(n−1) +x_(n−2) )/2)=(1/2)(((2^(n−2) +(−1)^(n−1) )/(3∙2^(n−3) ))+((2^(n−3) +(−1)^(n−2) )/(3∙2^(n−4) )))  =(1/(2^(n+1) ∙3))(((2^(n−2) −(−1)^n )/2^(−3) )+((2^(n−3) +(−1)^n )/2^(−4) ))  =(1/(2^(n+1) ∙3))[2^3 (2^(n−2) −(−1)^n )+2^4 (2^(n−3) +(−1)^n )]  =((2^3 2^(n−2) −2^3 (−1)^n +2^4 2^(n−3) +2^4 (−1)^n )/(2^(n+1) ∙3))  =((2^(n+2) +(2^4 −2^3 )(−1)^n )/(2^(n+1) ∙3))  =((2^3 (2^(n−1) +(2−1)(−1)^n ))/(2^(n+1) ∙3))  =((2^(n−1) +(−1)^n )/(2^(n−2) ∙3))
x1=211+(1)13212=113/2=0x2=221+(1)23222=2+13=1xn1=2n2+(1)n132n3xn2=2n3+(1)n232n4xn1+xn22=12(2n2+(1)n132n3+2n3+(1)n232n4)=12n+13(2n2(1)n23+2n3+(1)n24)=12n+13[23(2n2(1)n)+24(2n3+(1)n)]=232n223(1)n+242n3+24(1)n2n+13=2n+2+(2423)(1)n2n+13=23(2n1+(21)(1)n)2n+13=2n1+(1)n2n23

Leave a Reply

Your email address will not be published. Required fields are marked *