Menu Close

let-x-1-and-1-1-give-the-integral-0-t-x-1-e-t-1-e-t-dt-at-form-of-serie-




Question Number 33353 by caravan msup abdo. last updated on 15/Apr/18
let x∈]1,+∞[ andλ ∈[−1,1]  give the integral ∫_0 ^∞  ((t^(x−1)  e^(−t) )/(1−λe^(−t) )) dt  at form of serie.
$$\left.{let}\:{x}\in\right]\mathrm{1},+\infty\left[\:{and}\lambda\:\in\left[−\mathrm{1},\mathrm{1}\right]\right. \\ $$$${give}\:{the}\:{integral}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} }{\mathrm{1}−\lambda{e}^{−{t}} }\:{dt} \\ $$$${at}\:{form}\:{of}\:{serie}. \\ $$
Commented by math khazana by abdo last updated on 18/Apr/18
let put A(x) = ∫_0 ^∞   ((t^(x−1)  e^(−t) )/(1−λ e^(−t) ))dt  A(x) = ∫_0 ^∞  t^(x−1)  e^(−t)  (Σ_(n=0) ^∞  λ^n  e^(−nt) )dt  = Σ_(n=0) ^∞  λ^n   ∫_0 ^∞  t^(x−1)  e^(−(n+1)t)  dt  ch.(n+1)t =u give  A(x) = Σ_(n=0) ^∞  λ^n   ∫_0 ^∞  ((u/(n+1)))^(x−1)  e^(−u)  (du/(n+1))  = Σ_(n=0) ^∞    (λ^n /((n+1)^x )) ∫_0 ^∞  u^(x−1)  e^(−u) du  =Γ(x) Σ_(n=0) ^∞     (λ^n /((n+1)^x )) .  Γ(x)=∫_0 ^∞   u^(x−1)  e^(−u) du
$${let}\:{put}\:{A}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} }{\mathrm{1}−\lambda\:{e}^{−{t}} }{dt} \\ $$$${A}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\lambda^{{n}} \:{e}^{−{nt}} \right){dt} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\lambda^{{n}} \:\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−\left({n}+\mathrm{1}\right){t}} \:{dt}\:\:{ch}.\left({n}+\mathrm{1}\right){t}\:={u}\:{give} \\ $$$${A}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\lambda^{{n}} \:\:\int_{\mathrm{0}} ^{\infty} \:\left(\frac{{u}}{{n}+\mathrm{1}}\right)^{{x}−\mathrm{1}} \:{e}^{−{u}} \:\frac{{du}}{{n}+\mathrm{1}} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\lambda^{{n}} }{\left({n}+\mathrm{1}\right)^{{x}} }\:\int_{\mathrm{0}} ^{\infty} \:{u}^{{x}−\mathrm{1}} \:{e}^{−{u}} {du} \\ $$$$=\Gamma\left({x}\right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\lambda^{{n}} }{\left({n}+\mathrm{1}\right)^{{x}} }\:. \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{x}−\mathrm{1}} \:{e}^{−{u}} {du} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *