Menu Close

let-X-1-and-X-2-be-independent-random-variable-of-uniform-distribution-If-it-is-known-that-X-i-uniform-0-1-and-let-S-X-1-X-2-Determine-the-Probability-density-function-from-S-




Question Number 145678 by syamilkamil1 last updated on 07/Jul/21
let X_1  and X_(2 )  be independent random variable   of uniform distribution . If it is known that  X_i ∼uniform (0,1) and let S = X_1  + X_2   Determine the Probability density function  from S!
$${let}\:{X}_{\mathrm{1}} \:{and}\:{X}_{\mathrm{2}\:} \:{be}\:{independent}\:{random}\:{variable}\: \\ $$$${of}\:{uniform}\:{distribution}\:.\:{If}\:{it}\:{is}\:{known}\:{that} \\ $$$${X}_{{i}} \sim{uniform}\:\left(\mathrm{0},\mathrm{1}\right)\:{and}\:{let}\:{S}\:=\:{X}_{\mathrm{1}} \:+\:{X}_{\mathrm{2}} \\ $$$${Determine}\:{the}\:{Probability}\:{density}\:{function} \\ $$$${from}\:{S}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *