Menu Close

let-x-1-and-x-n-1-1-n-n-x-1-calculate-x-interms-of-x-if-x-gt-1-2-find-1-3-find-the-value-of-n-1-1-2n-1-2-4-calculate-3-interms-of-3-




Question Number 38195 by maxmathsup by imad last updated on 22/Jun/18
let x≥1 and δ(x)=Σ_(n=1) ^∞   (((−1)^n )/n^x )  1) calculate δ(x) interms of ξ(x) if x>1  2)find  δ(1)  3) find the value of  Σ_(n=1) ^∞  (1/((2n+1)^2 ))  4) calculate δ(3) interms of ξ(3).
$${let}\:{x}\geqslant\mathrm{1}\:{and}\:\delta\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{{x}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\delta\left({x}\right)\:{interms}\:{of}\:\xi\left({x}\right)\:{if}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{2}\right){find}\:\:\delta\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\delta\left(\mathrm{3}\right)\:{interms}\:{of}\:\xi\left(\mathrm{3}\right). \\ $$
Commented by math khazana by abdo last updated on 23/Jun/18
1) δ(x)= Σ_(n=1) ^∞   (1/((2n)^x )) −Σ_(n=0) ^∞  (1/((2n+1)^x ))  = 2^(−x)  ξ(x) −Σ_(n=0) ^∞   (1/((2n+1)^x )) but we have  ξ(x)=Σ_(n=1) ^∞   (1/n^x ) = Σ_(n=1) ^∞  (1/((2n)^x )) +Σ_(n=0) ^∞  (1/((2n+1)^x ))  =2^(−x) ξ(x) +Σ_(n=0) ^∞   (1/((2n+1)^x )) ⇒  Σ_(n=0) ^∞    (1/((2n+1)^x )) =(1−2^(−x) )ξ(x) ⇒  δ(x)= 2^(−x) ξ(x) −(1−2^(−x) )ξ(x)  =(2^(1−x)  −1)ξ(x)  2) δ(1) =Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  3)we have Σ_(n=0) ^∞    (1/((2n+1)^2 )) =(1−2^(−1) )ξ(2)  =(3/4) Σ_(n=1) ^∞  (1/n^2 ) =(3/4) (π^2 /6) = (π^2 /8)  Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /8) .  4)δ(3)=(2^(1−3) −1)ξ(3)= ((1/4)−1)ξ(3)  =−(3/4)ξ(3) ⇒  Σ_(n=1) ^∞   (((−1)^n )/n^3 ) =−(3/4) Σ_(n=1) ^∞   (1/n^3 ) .
$$\left.\mathrm{1}\right)\:\delta\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{{x}} }\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{x}} } \\ $$$$=\:\mathrm{2}^{−{x}} \:\xi\left({x}\right)\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{x}} }\:{but}\:{we}\:{have} \\ $$$$\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{x}} }\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{{x}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{x}} } \\ $$$$=\mathrm{2}^{−{x}} \xi\left({x}\right)\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{x}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{x}} }\:=\left(\mathrm{1}−\mathrm{2}^{−{x}} \right)\xi\left({x}\right)\:\Rightarrow \\ $$$$\delta\left({x}\right)=\:\mathrm{2}^{−{x}} \xi\left({x}\right)\:−\left(\mathrm{1}−\mathrm{2}^{−{x}} \right)\xi\left({x}\right) \\ $$$$=\left(\mathrm{2}^{\mathrm{1}−{x}} \:−\mathrm{1}\right)\xi\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\delta\left(\mathrm{1}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:=−{ln}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{3}\right){we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\left(\mathrm{1}−\mathrm{2}^{−\mathrm{1}} \right)\xi\left(\mathrm{2}\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{3}}{\mathrm{4}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:. \\ $$$$\left.\mathrm{4}\right)\delta\left(\mathrm{3}\right)=\left(\mathrm{2}^{\mathrm{1}−\mathrm{3}} −\mathrm{1}\right)\xi\left(\mathrm{3}\right)=\:\left(\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}\right)\xi\left(\mathrm{3}\right) \\ $$$$=−\frac{\mathrm{3}}{\mathrm{4}}\xi\left(\mathrm{3}\right)\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} }\:=−\frac{\mathrm{3}}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *