Menu Close

let-x-1-and-x-n-1-1-n-n-x-1-calculate-x-interms-of-x-if-x-gt-1-2-find-1-3-find-the-value-of-n-1-1-2n-1-2-4-calculate-3-interms-of-3-




Question Number 38195 by maxmathsup by imad last updated on 22/Jun/18
let x≥1 and δ(x)=Σ_(n=1) ^∞   (((−1)^n )/n^x )  1) calculate δ(x) interms of ξ(x) if x>1  2)find  δ(1)  3) find the value of  Σ_(n=1) ^∞  (1/((2n+1)^2 ))  4) calculate δ(3) interms of ξ(3).
letx1andδ(x)=n=1(1)nnx1)calculateδ(x)intermsofξ(x)ifx>12)findδ(1)3)findthevalueofn=11(2n+1)24)calculateδ(3)intermsofξ(3).
Commented by math khazana by abdo last updated on 23/Jun/18
1) δ(x)= Σ_(n=1) ^∞   (1/((2n)^x )) −Σ_(n=0) ^∞  (1/((2n+1)^x ))  = 2^(−x)  ξ(x) −Σ_(n=0) ^∞   (1/((2n+1)^x )) but we have  ξ(x)=Σ_(n=1) ^∞   (1/n^x ) = Σ_(n=1) ^∞  (1/((2n)^x )) +Σ_(n=0) ^∞  (1/((2n+1)^x ))  =2^(−x) ξ(x) +Σ_(n=0) ^∞   (1/((2n+1)^x )) ⇒  Σ_(n=0) ^∞    (1/((2n+1)^x )) =(1−2^(−x) )ξ(x) ⇒  δ(x)= 2^(−x) ξ(x) −(1−2^(−x) )ξ(x)  =(2^(1−x)  −1)ξ(x)  2) δ(1) =Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  3)we have Σ_(n=0) ^∞    (1/((2n+1)^2 )) =(1−2^(−1) )ξ(2)  =(3/4) Σ_(n=1) ^∞  (1/n^2 ) =(3/4) (π^2 /6) = (π^2 /8)  Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /8) .  4)δ(3)=(2^(1−3) −1)ξ(3)= ((1/4)−1)ξ(3)  =−(3/4)ξ(3) ⇒  Σ_(n=1) ^∞   (((−1)^n )/n^3 ) =−(3/4) Σ_(n=1) ^∞   (1/n^3 ) .
1)δ(x)=n=11(2n)xn=01(2n+1)x=2xξ(x)n=01(2n+1)xbutwehaveξ(x)=n=11nx=n=11(2n)x+n=01(2n+1)x=2xξ(x)+n=01(2n+1)xn=01(2n+1)x=(12x)ξ(x)δ(x)=2xξ(x)(12x)ξ(x)=(21x1)ξ(x)2)δ(1)=n=1(1)nn=ln(2)3)wehaven=01(2n+1)2=(121)ξ(2)=34n=11n2=34π26=π28n=01(2n+1)2=π28.4)δ(3)=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn3=34n=11n3.

Leave a Reply

Your email address will not be published. Required fields are marked *