Menu Close

Let-x-1-x-2-x-3-the-number-real-x-1-lt-x-2-lt-x-3-T-P-2-R-3-defined-with-rule-T-P-x-1-P-x-2-P-x-3-for-all-P-x-P-2-a-Prove-that-T-form-linear-transformation-b-




Question Number 54967 by gunawan last updated on 15/Feb/19
Let x_1 , x_2 , x_3  the number real  x_1 <x_2 <x_3 . T : P_2 →R^3  defined  with rule T= [((P(x_1 ))),((P(x_2 ))),((P(x_3 ))) ]  for all P(x) ∈ P_2   a) Prove that T  form linear transformation  b) check whether  T bijektive
$$\mathrm{Let}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} \:\mathrm{the}\:\mathrm{number}\:\mathrm{real} \\ $$$${x}_{\mathrm{1}} <{x}_{\mathrm{2}} <{x}_{\mathrm{3}} .\:{T}\::\:{P}_{\mathrm{2}} \rightarrow{R}^{\mathrm{3}} \:\mathrm{defined} \\ $$$$\mathrm{with}\:\mathrm{rule}\:{T}=\begin{bmatrix}{{P}\left({x}_{\mathrm{1}} \right)}\\{{P}\left({x}_{\mathrm{2}} \right)}\\{{P}\left({x}_{\mathrm{3}} \right)}\end{bmatrix} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{P}\left({x}\right)\:\in\:{P}_{\mathrm{2}} \\ $$$$\left.{a}\right)\:{P}\mathrm{rove}\:\mathrm{that}\:{T}\:\:\mathrm{form}\:\mathrm{linear}\:\mathrm{transformation} \\ $$$$\left.\mathrm{b}\right)\:\mathrm{check}\:\mathrm{whether}\:\:{T}\:\mathrm{bijektive} \\ $$
Commented by kaivan.ahmadi last updated on 15/Feb/19
canyou define P?
$${canyou}\:{define}\:{P}? \\ $$
Commented by gunawan last updated on 15/Feb/19
P  is Polynomial
$${P}\:\:\mathrm{is}\:\mathrm{Polynomial} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *