Question Number 110562 by Aina Samuel Temidayo last updated on 29/Aug/20
$$\mathrm{Let}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{be}\:\mathrm{integers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{xy}\neq\mathrm{1},\:\mathrm{x}^{\mathrm{2}} \neq\mathrm{y}\:\mathrm{and}\:\mathrm{y}^{\mathrm{2}} \neq\mathrm{x}. \\ $$$$ \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{p}\mid\mathrm{xy}−\mathrm{1}\:\mathrm{and}\:\mathrm{p}\mid\mathrm{x}^{\mathrm{2}} −\mathrm{y} \\ $$$$\mathrm{then}\:\mathrm{p}\mid\mathrm{y}^{\mathrm{2}} −\mathrm{x}\:\mathrm{where}\:\mathrm{p}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Let}\:\mathrm{p}\:\mathrm{be}\:\mathrm{a}\:\mathrm{prime}.\:\mathrm{Suppose}\:\mathrm{that} \\ $$$$\mathrm{p}\mid\mathrm{x}^{\mathrm{2}} −\mathrm{y}\:\mathrm{and}\:\mathrm{p}\mid\mathrm{y}^{\mathrm{2}} −\mathrm{x},\:\mathrm{must}\:\mathrm{p}\mid\mathrm{xy}−\mathrm{1}? \\ $$$$ \\ $$$$\left[\mathrm{If}\:\mathrm{yes},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{it}.\:\mathrm{If}\:\mathrm{no},\:\mathrm{then}\:\mathrm{give}\:\mathrm{a}\right. \\ $$$$\left.\mathrm{counter}\:\mathrm{example}\right] \\ $$
Answered by Aziztisffola last updated on 29/Aug/20
$$\:\left(\mathrm{i}\right)\:\mathrm{p}\mid\mathrm{xy}−\mathrm{1}\:\Rightarrow\mathrm{p}\mid\mathrm{x}\left(\mathrm{xy}−\mathrm{1}\right)\:\Rightarrow\mathrm{p}\mid\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{x} \\ $$$$\:\mathrm{p}\mid\mathrm{x}^{\mathrm{2}} −\mathrm{y}\Rightarrow\mathrm{p}\mid\mathrm{yx}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \\ $$$$\:\Rightarrow\mathrm{p}\mid\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{x}−\mathrm{yx}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \Rightarrow\mathrm{p}\mid\mathrm{y}^{\mathrm{2}} −\mathrm{x} \\ $$
Commented by Aina Samuel Temidayo last updated on 29/Aug/20
$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{why}\:\mathrm{does}\:\mathrm{p}\mid\mathrm{x}\left(\mathrm{xy}−\mathrm{1}\right)\:? \\ $$
Commented by Aziztisffola last updated on 29/Aug/20
$$\mathrm{p}\mid\left(\mathrm{xy}−\mathrm{1}\right)\Rightarrow\mathrm{xy}−\mathrm{1}\equiv\mathrm{0}\left[\mathrm{p}\right]\: \\ $$$$\Rightarrow\mathrm{x}\left(\mathrm{xy}−\mathrm{1}\right)\equiv\mathrm{0}\left[\mathrm{p}\right]\:\Rightarrow\mathrm{p}\mid\mathrm{x}\left(\mathrm{xy}−\mathrm{1}\right) \\ $$
Answered by Aziztisffola last updated on 29/Aug/20
$$\left(\mathrm{ii}\right)\:\mathrm{No} \\ $$$$\:\mathrm{p}=\mathrm{3}\:\mathrm{and}\:\mathrm{x}=\mathrm{y}=\mathrm{3} \\ $$$$\:\mathrm{3}\mid\mathrm{3}^{\mathrm{2}} −\mathrm{3}\:\mathrm{and}\:\mathrm{3}\mid\mathrm{3}^{\mathrm{2}} −\mathrm{3}\:\nRightarrow\mathrm{3}\nmid\mathrm{8} \\ $$$$\mathrm{or}\:\mathrm{p}=\mathrm{2};\:\mathrm{x}=\mathrm{8}\:\mathrm{and}\:\mathrm{y}=\mathrm{4} \\ $$