Menu Close

let-x-and-y-be-two-real-numbers-if-x-y-10-prove-ln-x-1-ln-y-1-2ln6-




Question Number 56477 by problem solverd last updated on 17/Mar/19
let x and y be two real numbers  if x+y≤10 prove  ln(x+1)+ln(y+1)≤2ln6
$$\mathrm{let}\:{x}\:\mathrm{and}\:{y}\:\mathrm{be}\:\mathrm{two}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{if}\:{x}+{y}\leqslant\mathrm{10}\:\mathrm{prove} \\ $$$$\mathrm{ln}\left({x}+\mathrm{1}\right)+\mathrm{ln}\left({y}+\mathrm{1}\right)\leqslant\mathrm{2ln6} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Mar/19
x+y≤10  (x+1)+(y+1)≤12  (((x+1)+(y+1))/2)≥(√((x+1)((y+1)))   6≥(√((x+1)(y+1)))   36≥(x+1)(y+1)  ln(36)≥ln(x+1)+ln(y+1)  2ln6≥ln(x+1)+ln(y+1)
$${x}+{y}\leqslant\mathrm{10} \\ $$$$\left({x}+\mathrm{1}\right)+\left({y}+\mathrm{1}\right)\leqslant\mathrm{12} \\ $$$$\frac{\left({x}+\mathrm{1}\right)+\left({y}+\mathrm{1}\right)}{\mathrm{2}}\geqslant\sqrt{\left({x}+\mathrm{1}\right)\left(\left({y}+\mathrm{1}\right)\right.}\: \\ $$$$\mathrm{6}\geqslant\sqrt{\left({x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right)}\: \\ $$$$\mathrm{36}\geqslant\left({x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$${ln}\left(\mathrm{36}\right)\geqslant{ln}\left({x}+\mathrm{1}\right)+{ln}\left({y}+\mathrm{1}\right) \\ $$$$\mathrm{2}{ln}\mathrm{6}\geqslant{ln}\left({x}+\mathrm{1}\right)+{ln}\left({y}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *