Menu Close

let-x-and-y-such-that-2x-2-4x-2y-0-y-2-x-6-2-0-find-the-possibles-value-of-x-y-




Question Number 34211 by candre last updated on 02/May/18
let x and y such that  2x^2 +4x−2y=0  y^2 −(x+6)^2 =0  find the possibles value of x+y
$${let}\:{x}\:{and}\:{y}\:{such}\:{that} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{2}{y}=\mathrm{0} \\ $$$${y}^{\mathrm{2}} −\left({x}+\mathrm{6}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:{the}\:{possibles}\:{value}\:{of}\:{x}+{y} \\ $$
Answered by MJS last updated on 02/May/18
I. 2x^2 +4x−2y=0  II. y^2 −(x+6)^2 =0 ⇒ y=±(x+6)  case 1  y=−x−6 ⇒ x+y=−6  2x^2 +4x−2(−x−6)=0  2x^2 +6x+12=0  x_1 =−(3/2)−((√7)/2)i; y_1 =−(9/2)+((√7)/2)i  x_2 =−(3/2)+((√7)/2)i; y_2 =−(9/2)−((√7)/2)i  case 2  y=x+6  2x^2 +4x−2(x+6)=0  2x^2 +2x−12=0  x_3 =−3; y_3 =3  x_4 =2; y_4 =8    x, y∈C ⇒ (x+y)∈{−6; 0; 10}  x, y∈R ⇒ (x+y)∈{0; 10}
$${I}.\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{2}{y}=\mathrm{0} \\ $$$${II}.\:{y}^{\mathrm{2}} −\left({x}+\mathrm{6}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{y}=\pm\left({x}+\mathrm{6}\right) \\ $$$$\mathrm{case}\:\mathrm{1} \\ $$$${y}=−{x}−\mathrm{6}\:\Rightarrow\:{x}+{y}=−\mathrm{6} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{2}\left(−{x}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{12}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i};\:{y}_{\mathrm{1}} =−\frac{\mathrm{9}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{2}} =−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i};\:{y}_{\mathrm{2}} =−\frac{\mathrm{9}}{\mathrm{2}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{case}\:\mathrm{2} \\ $$$${y}={x}+\mathrm{6} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{2}\left({x}+\mathrm{6}\right)=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{12}=\mathrm{0} \\ $$$${x}_{\mathrm{3}} =−\mathrm{3};\:{y}_{\mathrm{3}} =\mathrm{3} \\ $$$${x}_{\mathrm{4}} =\mathrm{2};\:{y}_{\mathrm{4}} =\mathrm{8} \\ $$$$ \\ $$$${x},\:{y}\in\mathbb{C}\:\Rightarrow\:\left({x}+{y}\right)\in\left\{−\mathrm{6};\:\mathrm{0};\:\mathrm{10}\right\} \\ $$$${x},\:{y}\in\mathbb{R}\:\Rightarrow\:\left({x}+{y}\right)\in\left\{\mathrm{0};\:\mathrm{10}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *