Menu Close

let-x-arctan-2x-1-x-2-1-calculate-n-x-2-calculate-n-0-anddevelpp-at-integr-serie-




Question Number 53961 by maxmathsup by imad last updated on 27/Jan/19
let ϕ(x) =((arctan(2x))/(1−x^2 ))  1) calculate ϕ^((n)) (x)   2) calculate ϕ^((n)) (0) anddevelpp ϕ at integr serie
letφ(x)=arctan(2x)1x21)calculateφ(n)(x)2)calculateφ(n)(0)anddevelppφatintegrserie
Commented by maxmathsup by imad last updated on 06/Feb/19
1) we have ϕ(x)=(1/2)arctan(2x){(1/(1−x)) +(1/(1+x))) =(1/2) ((arctan(2x))/(1−x)) +(1/2) ((arctan(2x))/(1+x))  =W(x) −H(x) with W(x)=(1/2) ((arctan(2x))/(x+1)) and H(x)=(1/2) ((arctan(2x))/(x−1))  ⇒ ϕ^((n)) (x)=W^((n)) (x)−H^((n)) (x)   leibniz formula give  W^((n)) (x)=Σ_(k=0) ^n  C_n ^k   (arctan(2x))^((k)) ((1/(x+1)))^((n−k))   but   ((1/(x+1)))^((n−k)) =(((−1)^(n−k) (n−k)!)/((x+1)^(n−k+1) ))  we have  (arctan(2x))^′  =(2/(1+4x^2 )) ⇒ (arctan(2x))^((k))  =2((1/(4x^2  +1)))^((k−1))   =−i { (1/(2x−i)) −(1/(2x+i))}^((k−1))  =i{(1/(2(x+(i/2)))) −(1/(2(x−(i/2))))}^((k−1))   =(i/2){  (((−1)^(k−1) (k−1)!)/((x+(i/2))^k )) −(((−1)^(k−1) (k−1)!)/((x−(i/2))^k ))}  =(i/2)(−1)^(k−1) (k−1)!{ (((x−(i/2))^k −(x+(i/2))^k )/((x^2  +(1/4))^k ))} ⇒  W^((n)) (x) = arctan(2x)(((−1)^n n!)/((x+1)^(n+1) )) +Σ_(k=1) ^n  C_n ^k (i/2)(−1)^(k−1) (k−1)!{(((x−(i/2))^k −(x+(i/2))^k )/((x^2  +(1/4))^k ))}(((−1)^(n−k) (n−k)!)/((x+1)^(n−k+1) ))  .  =(((−1)^n n!)/((x+1)^(n+1) )) arctan(2x) −Σ_(k=1) ^n   ((n!)/k) (−1)^k ( (( Im(x+(i/2))^k )/((x^2  +(1/4))^k ))) (1/((x+1)^(n−k+1) )) .
1)wehaveφ(x)=12arctan(2x){11x+11+x)=12arctan(2x)1x+12arctan(2x)1+x=W(x)H(x)withW(x)=12arctan(2x)x+1andH(x)=12arctan(2x)x1φ(n)(x)=W(n)(x)H(n)(x)leibnizformulagiveW(n)(x)=k=0nCnk(arctan(2x))(k)(1x+1)(nk)but(1x+1)(nk)=(1)nk(nk)!(x+1)nk+1wehave(arctan(2x))=21+4x2(arctan(2x))(k)=2(14x2+1)(k1)=i{12xi12x+i}(k1)=i{12(x+i2)12(xi2)}(k1)=i2{(1)k1(k1)!(x+i2)k(1)k1(k1)!(xi2)k}=i2(1)k1(k1)!{(xi2)k(x+i2)k(x2+14)k}W(n)(x)=arctan(2x)(1)nn!(x+1)n+1+k=1nCnki2(1)k1(k1)!{(xi2)k(x+i2)k(x2+14)k}(1)nk(nk)!(x+1)nk+1.=(1)nn!(x+1)n+1arctan(2x)k=1nn!k(1)k(Im(x+i2)k(x2+14)k)1(x+1)nk+1.
Commented by maxmathsup by imad last updated on 06/Feb/19
also we have   H^((n)) (x) =(((−1)^n n!)/((x−1)!)) arctan(2x)−Σ_(k=1) ^n  n!(((−1)^k )/k) ((Im(x+(i/2))^k )/((x^2  +(1/4))^k (x−1)^(n−k +1) )) .  ϕ^((n)) (0) =W^((n)) (0)−H^((n)) (0)   =n! Σ_(k=1) ^n   (((−1)^(k−1) )/k)   ((Im((i^k /2^k )))/(((1/4))^k )) −(n! Σ_(k=1) ^n  (((−1)^(k−1) )/k) ((Im((i^k /2^k )))/(((1/4))^k ))(−1)^(n−k +1)   =n!{Σ_(k=1) ^n   (((−1)^(k−1) )/k) 4^(−k)  (1/2^k )sin(((kπ)/2))−Σ_(k=1) ^n  (−1)^n  4^(−k)  (1/2^k )sin(((kπ)/2))} .
alsowehaveH(n)(x)=(1)nn!(x1)!arctan(2x)k=1nn!(1)kkIm(x+i2)k(x2+14)k(x1)nk+1.φ(n)(0)=W(n)(0)H(n)(0)=n!k=1n(1)k1kIm(ik2k)(14)k(n!k=1n(1)k1kIm(ik2k)(14)k(1)nk+1=n!{k=1n(1)k1k4k12ksin(kπ2)k=1n(1)n4k12ksin(kπ2)}.

Leave a Reply

Your email address will not be published. Required fields are marked *