Question Number 53961 by maxmathsup by imad last updated on 27/Jan/19
$${let}\:\varphi\left({x}\right)\:=\frac{{arctan}\left(\mathrm{2}{x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\varphi^{\left({n}\right)} \left({x}\right)\: \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\varphi^{\left({n}\right)} \left(\mathrm{0}\right)\:{anddevelpp}\:\varphi\:{at}\:{integr}\:{serie} \\ $$
Commented by maxmathsup by imad last updated on 06/Feb/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\varphi\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\mathrm{2}{x}\right)\left\{\frac{\mathrm{1}}{\mathrm{1}−{x}}\:+\frac{\mathrm{1}}{\mathrm{1}+{x}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{\mathrm{1}−{x}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}} \\ $$$$={W}\left({x}\right)\:−{H}\left({x}\right)\:{with}\:{W}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}+\mathrm{1}}\:{and}\:{H}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}−\mathrm{1}} \\ $$$$\Rightarrow\:\varphi^{\left({n}\right)} \left({x}\right)={W}^{\left({n}\right)} \left({x}\right)−{H}^{\left({n}\right)} \left({x}\right)\:\:\:{leibniz}\:{formula}\:{give} \\ $$$${W}^{\left({n}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left({arctan}\left(\mathrm{2}{x}\right)\right)^{\left({k}\right)} \left(\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)^{\left({n}−{k}\right)} \:\:{but}\: \\ $$$$\left(\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)^{\left({n}−{k}\right)} =\frac{\left(−\mathrm{1}\right)^{{n}−{k}} \left({n}−{k}\right)!}{\left({x}+\mathrm{1}\right)^{{n}−{k}+\mathrm{1}} } \\ $$$${we}\:{have}\:\:\left({arctan}\left(\mathrm{2}{x}\right)\right)^{'} \:=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\:\Rightarrow\:\left({arctan}\left(\mathrm{2}{x}\right)\right)^{\left({k}\right)} \:=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{1}}\right)^{\left({k}−\mathrm{1}\right)} \\ $$$$=−{i}\:\left\{\:\frac{\mathrm{1}}{\mathrm{2}{x}−{i}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}+{i}}\right\}^{\left({k}−\mathrm{1}\right)} \:={i}\left\{\frac{\mathrm{1}}{\mathrm{2}\left({x}+\frac{{i}}{\mathrm{2}}\right)}\:−\frac{\mathrm{1}}{\mathrm{2}\left({x}−\frac{{i}}{\mathrm{2}}\right)}\right\}^{\left({k}−\mathrm{1}\right)} \\ $$$$=\frac{{i}}{\mathrm{2}}\left\{\:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}+\frac{{i}}{\mathrm{2}}\right)^{{k}} }\:−\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}−\frac{{i}}{\mathrm{2}}\right)^{{k}} }\right\} \\ $$$$=\frac{{i}}{\mathrm{2}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left\{\:\frac{\left({x}−\frac{{i}}{\mathrm{2}}\right)^{{k}} −\left({x}+\frac{{i}}{\mathrm{2}}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}} }\right\}\:\Rightarrow \\ $$$${W}^{\left({n}\right)} \left({x}\right)\:=\:{arctan}\left(\mathrm{2}{x}\right)\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({x}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:+\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \frac{{i}}{\mathrm{2}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left\{\frac{\left({x}−\frac{{i}}{\mathrm{2}}\right)^{{k}} −\left({x}+\frac{{i}}{\mathrm{2}}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}} }\right\}\frac{\left(−\mathrm{1}\right)^{{n}−{k}} \left({n}−{k}\right)!}{\left({x}+\mathrm{1}\right)^{{n}−{k}+\mathrm{1}} }\:\:. \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({x}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:{arctan}\left(\mathrm{2}{x}\right)\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{n}!}{{k}}\:\left(−\mathrm{1}\right)^{{k}} \left(\:\frac{\:{Im}\left({x}+\frac{{i}}{\mathrm{2}}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}} }\right)\:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{{n}−{k}+\mathrm{1}} }\:. \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 06/Feb/19
$${also}\:{we}\:{have}\: \\ $$$${H}^{\left({n}\right)} \left({x}\right)\:=\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({x}−\mathrm{1}\right)!}\:{arctan}\left(\mathrm{2}{x}\right)−\sum_{{k}=\mathrm{1}} ^{{n}} \:{n}!\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\frac{{Im}\left({x}+\frac{{i}}{\mathrm{2}}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}} \left({x}−\mathrm{1}\right)^{{n}−{k}\:+\mathrm{1}} }\:. \\ $$$$\varphi^{\left({n}\right)} \left(\mathrm{0}\right)\:={W}^{\left({n}\right)} \left(\mathrm{0}\right)−{H}^{\left({n}\right)} \left(\mathrm{0}\right)\: \\ $$$$={n}!\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:\:\:\frac{{Im}\left(\frac{{i}^{{k}} }{\mathrm{2}^{{k}} }\right)}{\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}} }\:−\left({n}!\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:\frac{{Im}\left(\frac{{i}^{{k}} }{\mathrm{2}^{{k}} }\right)}{\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{k}} }\left(−\mathrm{1}\right)^{{n}−{k}\:+\mathrm{1}} \right. \\ $$$$={n}!\left\{\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:\mathrm{4}^{−{k}} \:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }{sin}\left(\frac{{k}\pi}{\mathrm{2}}\right)−\sum_{{k}=\mathrm{1}} ^{{n}} \:\left(−\mathrm{1}\right)^{{n}} \:\mathrm{4}^{−{k}} \:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }{sin}\left(\frac{{k}\pi}{\mathrm{2}}\right)\right\}\:. \\ $$