let-x-arctan-2x-1-x-2-1-calculate-n-x-2-calculate-n-0-anddevelpp-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 53961 by maxmathsup by imad last updated on 27/Jan/19 letφ(x)=arctan(2x)1−x21)calculateφ(n)(x)2)calculateφ(n)(0)anddevelppφatintegrserie Commented by maxmathsup by imad last updated on 06/Feb/19 1)wehaveφ(x)=12arctan(2x){11−x+11+x)=12arctan(2x)1−x+12arctan(2x)1+x=W(x)−H(x)withW(x)=12arctan(2x)x+1andH(x)=12arctan(2x)x−1⇒φ(n)(x)=W(n)(x)−H(n)(x)leibnizformulagiveW(n)(x)=∑k=0nCnk(arctan(2x))(k)(1x+1)(n−k)but(1x+1)(n−k)=(−1)n−k(n−k)!(x+1)n−k+1wehave(arctan(2x))′=21+4x2⇒(arctan(2x))(k)=2(14x2+1)(k−1)=−i{12x−i−12x+i}(k−1)=i{12(x+i2)−12(x−i2)}(k−1)=i2{(−1)k−1(k−1)!(x+i2)k−(−1)k−1(k−1)!(x−i2)k}=i2(−1)k−1(k−1)!{(x−i2)k−(x+i2)k(x2+14)k}⇒W(n)(x)=arctan(2x)(−1)nn!(x+1)n+1+∑k=1nCnki2(−1)k−1(k−1)!{(x−i2)k−(x+i2)k(x2+14)k}(−1)n−k(n−k)!(x+1)n−k+1.=(−1)nn!(x+1)n+1arctan(2x)−∑k=1nn!k(−1)k(Im(x+i2)k(x2+14)k)1(x+1)n−k+1. Commented by maxmathsup by imad last updated on 06/Feb/19 alsowehaveH(n)(x)=(−1)nn!(x−1)!arctan(2x)−∑k=1nn!(−1)kkIm(x+i2)k(x2+14)k(x−1)n−k+1.φ(n)(0)=W(n)(0)−H(n)(0)=n!∑k=1n(−1)k−1kIm(ik2k)(14)k−(n!∑k=1n(−1)k−1kIm(ik2k)(14)k(−1)n−k+1=n!{∑k=1n(−1)k−1k4−k12ksin(kπ2)−∑k=1n(−1)n4−k12ksin(kπ2)}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-arctan-x-2-developp-f-at-i-serie-the-Q-is-developp-f-at-integr-serie-Next Next post: let-f-x-x-x-2pi-periodic-odd-developp-f-at-fourier-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.