Menu Close

Let-x-be-a-positive-integer-multiple-of-17-that-satisfies-the-inequality-0-lt-5-x-120-x-lt-1-Find-the-value-of-x-




Question Number 182461 by HeferH last updated on 09/Dec/22
Let x be a positive integer multiple of 17  that satisfies the inequality:   0 < ((5(x − 120))/x) < 1   Find the value of x.
Letxbeapositiveintegermultipleof17thatsatisfiestheinequality:0<5(x120)x<1Findthevalueofx.
Answered by mr W last updated on 09/Dec/22
x=17k  0<((5(17k−120))/(17k))<1  0<85k−600<17k  600<85k ⇒k>((600)/(85)) ⇒k≥8  68k<600 ⇒k<((600)/(68)) ⇒k≤8  ⇒k=8 ⇒x=17×8=136 ✓
x=17k0<5(17k120)17k<10<85k600<17k600<85kk>60085k868k<600k<60068k8k=8x=17×8=136
Answered by MJS_new last updated on 09/Dec/22
x=17n  0<((85n−600)/(17n))<1  0<85n−600<17n  600<85n<17n+600  ((120)/(17))<n<(n/5)+((120)/(17))  7.05...<n<(n/5)+7.05...  n_(min) =8 and because of 9>(9/5)+7.05... it′s the  only solution  ⇒ x=8×17=136
x=17n0<85n60017n<10<85n600<17n600<85n<17n+60012017<n<n5+120177.05<n<n5+7.05nmin=8andbecauseof9>95+7.05itstheonlysolutionx=8×17=136

Leave a Reply

Your email address will not be published. Required fields are marked *